Table of Contents

Introduction .. i
Purpose .. i
Reference ... i
Directions for Use ... i
Standards for Hydraulics Calculations ... i

Chapter 1: Determining Engine Pressure ..1
Nozzle Pressure .. 10
Friction Loss – Hose Diameter .. 21
Friction Loss – Length of Hoselay ... 25
Appliances ... 29
Elevation Differential – Head ... 33
Summary ... 37

Chapter II: Working the Basic Hydraulics Formula 38
Determining Nozzle Pressure .. 40
Computing Friction Loss .. 48
Reducing Friction Loss .. 54
IFSTA Friction Loss Formula ... 61
Determining Friction Loss for Appliances .. 67
Principles of Head Pressure .. 73
Computing Head in Structures .. 85
Computing Head for Wildland Hoselays .. 90
Summary ... 96

Chapter III: Determining Nozzle Reaction .. 100

Chapter IV: Relay Pumping ... 114
Summary ... 132

Chapter V: Foam Operations ... 134
Summary ... 152

Chapter VI: Using the Field Hydraulics Reference Sheet 153
How to Use the Field Hydraulic Reference Sheet ... 155
How to Use the Wildland Hydraulics Reference Sheet 164
Solving Engine Pressure – Multiple Lines .. 168

Chapter VII: Solving Hydraulics Problems ... 174

Appendix ... 217
Field Hydraulics Reference Sheets ... 217-218
Introduction

The role of the Fire Engineer is vital within the fire service. The Fire Engineer must supply adequate hose streams with the proper amount of water at effective, yet safe pressures in order to accomplish one of the fire service’s basic missions – fire control. Expert control of the pump and of the hydraulics system of the fire engine is crucial.

Supplying the proper amount of water under the right amount of pressure is no easy task. The Fire Engineer must rely upon experience and quick effective guides to perform this vital function. In an emergency situation, there is no time to figure out long hydraulics formulas or perform exacting calculations.

Purpose

This work book has been developed with the intent of allowing prospective Engineers to become proficient at basic fire service hydraulics on their own, at their own pace, using a standard, practical set of rules and a single formula. This work book also sets Department standards in the application of fire service hydraulics.

Reference

The International Fire Service Training Association (IFSTA) training materials.

Directions for Use

This work book is set up to help you progress from simple to more complex computations. At each step you will be asked questions, and in most cases you will be given a choice of answers. When you choose the answer that you think is right, you will be directed to turn to another page where you will be given appropriate feedback.

In hydraulics problems there is an acceptable margin of error. If pressures are within 5 to 10 pounds per square inch (PSI) of the required PSI, little effectiveness is lost. Keep in mind that gauges are not 100% accurate.

Standards for Hydraulics Calculations

Hydraulics Formulas

Studies have identified that as a result of the new advanced materials being used by the manufacturers of hose and nozzles, the friction loss formula \((2Q^2 + Q)\) is inaccurate. The new materials are much less resistant to water flow, and therefore have less friction loss. Consequently, IFSTA has developed the Coefficient Formula to accommodate the new hose and/or nozzles. The Coefficient Formula (Coefficient x Diameter Squared x Length of Lay) should be used by all personnel to calculate hydraulics problems.
Variable GPM Nozzles

Based on information gathered from IFSTA, the manufacturers, and other agencies currently utilizing these nozzles, the following GPM settings have been established as the Department’s standard:

<table>
<thead>
<tr>
<th>Nozzle</th>
<th>Hose</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 ½"</td>
<td>2 ½"</td>
<td>250 GPM</td>
</tr>
<tr>
<td>1 ½"</td>
<td>1 ¾"</td>
<td>150 GPM</td>
</tr>
<tr>
<td>1 ½"</td>
<td>1 ½"</td>
<td>20/95 GPM (wildland nozzle combination)*</td>
</tr>
<tr>
<td>1 ½"</td>
<td>1 ½"</td>
<td>50 GPM (wildland nozzle – tip)</td>
</tr>
<tr>
<td>1"</td>
<td>1"</td>
<td>20 GPM (wildland nozzle combination)</td>
</tr>
</tbody>
</table>

Note: All combination nozzles are pumped at 100 PSI Nozzle Pressure.

Note: 1 ½" wildland nozzles currently being used have settings for 20 GPM and 95 GPM. For this reason, there is no standard GPM setting established for this nozzle.

These standards have been established for consistency and for testing purposes. This does not restrict the firefighter from controlling the GPM flow; however, changes in GPM flow need to be communicated to the pump operator so that appropriate calculations can be made.
Chapter I

Determining Engine Pressure (EP)
Determining Engine Pressure (EP)

Engine pressure is the amount of pressure, in pounds per square inch (PSI), indicated on the pressure gauge or any given orifice discharge gauge. Stream pattern remaining the same, engine pressure is the major controlling factor that changes nozzle pressure and volume discharge. Adjusting the pump throttle changes engine pressure. The formula for determining engine pressure is:

$$ EP = NP + FL + A (\pm) H $$

Given:

- EP = Engine Pressure
- NP = Nozzle Pressure
- FL = Friction Loss per 100 feet of hose.
- A = Appliance (if applicable)
 - (+) = increase in elevation above pump
 - (-) = decrease in elevation below pump

TURN TO PAGE 3
\[EP = NP + FL + A (\pm) H \]

What is Engine Pressure?

1) The amount of pressure in PSI at the discharge side of the pump.

TURN TO PAGE 4

2) The amount of pressure in PSI discharging at the nozzle.

TURN TO PAGE 5
$EP = NP + FL + A \ (\pm) \ H$

You said, “Engine pressure is the amount of pressure in PSI at the discharge side of the pump.”

YOU ARE CORRECT!

MOVE ON TO PAGE 9
\[EP = NP + FL + A (\pm) H \]

You said, “Engine pressure is the amount of pressure in PSI discharging at the nozzle.” You apparently don’t understand engine pressure; so let’s try again.

Visualize yourself running the pump on a fire engine. You are standing at the pump level. You are running the throttle out, which increases the RPM’s of the pump, and notice the pressure gauge at the pump panel increase from 50 PSI to 100 PSI. This is energy created by the pump which makes the water move through the plumbing on the fire engine and hoses connected to the discharges on the fire engine. The engine pressure is telling you the amount of pressure being developed at the discharge side of the pump and up to the discharge outlets on the fire engine. The pressure registering on the engine pressure gauge will not be the same at the nozzle because energy (pressure) is being used up overcoming friction in the hose. Energy (pressure) is also used up by pumping water to levels higher than the pump. Water weighs 8.35 pounds per gallon and this weight is using up some of the engine pressure.

TURN TO PAGE 6
\[EP = NP + FL + A (\pm) H \]

So Engine Pressure is?

1) The amount of pressure (PSI) discharging at the nozzle.

TURN TO PAGE 7

2) The amount of pressure (PSI) registering on the engine pressure gauge, and is the amount of pressure (PSI) at the discharge side of the pump and all discharge outlets.

TURN TO PAGE 8
EP = NP + FL + A (±) H

You said, “Engine pressure is the amount of pressure (PSI) discharging at the nozzle.”

THAT IS INCORRECT

RETURN TO PAGE 2 AND TRY AGAIN
\[EP = NP + FL + A (\pm) H \]

You said, “Engine pressure is the amount of pressure (PSI) registering on the engine pressure gauge and is the amount of pressure (PSI) at the discharge side of the pump and all discharge outlets.”

FANTASTIC!

NOW TURN TO PAGE 9
\[\text{EP} = \text{NP} + \text{FL} + A \pm H \]

Facts that you must know as a Pump Operator in order to determine engine pressure [\(EP = NP + FL + A \pm H \) are:

1) Nozzle Pressure (NP)
2) Size of tips or nozzle (FL)
3) Diameter of hose (FL)
4) Length of hose in lay (FL)
5) Appliance (A)
6) Elevation differential either above or below from pump to nozzle (\(\pm H \))

These six facts are needed in all cases to determine engine pressure. So make sure you understand these facts and write them on your scratch paper or record them in your memory bank.

TURN TO PAGE 10
\[EP = NP + FL + A (\pm) H \]

NOZZLE PRESSURE (NP)

Fire streams are divided into two general categories: solid streams and fog streams.

1) A solid stream is used when a large concentration of water is desired in one specific area or when a long reach is required. There are two basic ways of applying water on fires through solid stream nozzles: hand held tips on nozzles, and tips on master stream appliances. Through extensive testing it was found that on hand held tips the best operating nozzle pressure is 50 PSI. On master stream appliances the best operating nozzle pressure is 80 PSI.

2) Fog streams produce the most water surface for heat absorption, but also have the shortest range. Fog nozzles are designed to work most effectively at 100 PSI. Fog nozzles are used on hand held lines as well as on master stream appliance. While being used either way, the nozzle pressure would be the same, 100 PSI.

TURN TO PAGE 11
EP = \textbf{NP} + FL + A (±) H

When computing hydraulics problems, you must include the nozzle pressure. The following nozzle pressures won’t change and must be added in on all problems:

TIPS – Solid Streams

- Hand held lines: 50 PSI NP
- Master Stream appliances: 80 PSI NP

COMBINATION NOZZLES – Fog Streams

- Hand held and Master Stream appliances: 100 PSI NP

TURN TO PAGE 12
EP = NP + FL + A (±) H

When computing engine pressure, you must include the nozzle pressure. Which are the four standard nozzle pressures? (Choose either #1 or #2 below.)

1) Hand held tips 50 PSI NP
 Master stream tips 80 PSI NP
 Hand held fog nozzles 100 PSI NP
 Master stream fog nozzles 100 PSI NP

TURN TO PAGE 13

2) Hand held tips 80 PSI NP
 Master stream tips 50 PSI NP
 Hand held fog nozzles 80 PSI NP
 Master stream fog nozzles 150 PSI NP

TURN TO PAGE 14
\[EP = NP + FL + A (\pm) H \]

CORRECT!

Nozzle pressure is the easiest part of the hydraulics problem because all you have to remember is 50 NP, 80 NP, and 100 NP. So don’t forget to add it in the problem.

TURN TO PAGE 15
\[EP = \mathbf{NP} + FL + A (\pm) H \]

WRONG

Perhaps the statement on nozzle pressure wasn’t clear enough, so

GO BACK TO PAGE 11 and read the explanation again.
EP = NP + FL + A (±) H

When solving hydraulics problems, you must always consider Nozzle Pressure (NP), Friction Loss (FL), Appliance (A), and Head (±H) in order to come up with the correct Engine Pressure (EP).

A practical way of using this formula in the field is to organize your scratch paper so that you will not forget to solve a part of the hydraulics problem.

EXAMPLE:

(Scratch Paper)

- NP = ________
- FL = ________ (Blank area to figure problem)
- A = ________
- H = ________
- EP = ________

What are the four segments of the hydraulics formula needed when determining Engine Pressure for any hoselay?

Fill in the blanks:

\[EP = _____ + _____ + _____ (\pm) _____ \]

TURN TO PAGE 16
$$EP = NP + FL + A (\pm) H$$

If you answered $EP = NP + FL + A (\pm)$,

YOU ARE DOING GREAT!

TURN TO PAGE 17
\[EP = NP + FL + A (\pm) H \]

SIZE OF TIPS OR NOZZLES (FL)

The size of the tip or nozzle, plus pressure, determines the gallons per minute (GPM). As an example: a ½ inch tip at 50 PSI flows 52 GPM, and a 1 inch tip at 50 PSI flows 210 GPM. The (GPM) flow is the major factor that causes friction loss in fire hose. The larger the tip or nozzle, the more friction loss involved. To determine the friction loss, you must know the size of the tip or nozzle so that the correct GPM figure for that size nozzle is used.

TURN TO PAGE 18
\[EP = NP + FL + A (\pm) H \]

Why must you know the size of the tip or nozzle when you are solving hydraulics problems?

1) The size of the tip or nozzle determines the GPM flow for computing friction loss.

TURN TO PAGE 19

2) The size of the tip or nozzle determines the size of the hose to be used.

TURN TO PAGE 20
\[EP = NP + FL + A (\pm) H \]

You answered, “The size of the tip or nozzle determines the GPM to be used.”

RIGHT! You are doing fine!

TURN TO PAGE 21
EP = NP + FL + A (±) H

UH, OH! Perhaps we weren’t clear.

The size of the tip or nozzle determines the GPM to be used for that particular size nozzle in determining friction loss.

RETURN TO PAGE 17 AND READ AGAIN
EP = NP + FL + A (±) H

HOSE DIAMETER (FL):

The size of the hose determines the amount of friction loss for each 100 foot section of hose. The smaller the diameter, the more friction loss involved. The larger the diameter, the less friction loss involved. You must know the diameter of the hose in order to determine the friction loss for the hose.

TURN TO PAGE 22
\[EP = NP + FL + A (\pm) H \]

Why is it necessary to know the diameter of the hose when computing friction loss?

1) To determine the amount of flow.

TURN TO PAGE 23

2) To be able to use the correct figure to determine friction loss for each 100 foot section of hose.

TURN TO PAGE 24
EP = NP + FL + A (±) H

YOUR ANSWER IS INCORRECT.

Flow is determined by nozzle size and nozzle pressure.

RETURN TO PAGE 21 AND READ THE PARAGRAPH AGAIN.
EP = NP + FL + A (±) H

Your answer, “To use the correct figure to determine friction loss for each 100 feet of hose,” is right.

YOU ARE DOING FINE!

GO TO PAGE 25
\[EP = NP + FL + A (\pm) H \]

LENGTH OF HOSELAY (FL)

In order to determine the amount of friction loss in a hoselay, you must know the entire length of the hoselay. All friction loss factors are computed in 100 foot lengths of hose. So if you have a ½ inch tip and a 1 ½ inch hose, the friction loss is 6 PSI per hundred feet of 1 ½ inch hose. Remember, friction loss computation is based on 100 foot lengths.

TURN TO PAGE 26
EP = NP + FL + A (±) H

In order to determine the amount of friction loss in a hoselay, you must know the entire length of the lay, because friction loss is computed in ______________.

1) 100 foot lengths of hose.

TURN TO PAGE 27

2) 50 foot lengths of hose.

TURN TO PAGE 28
EP = NP + FL + A (±) H

You answered, “100 foot lengths.”

CORRECT!

TURN TO PAGE 29 AND CONTINUE
\[EP = NP + FL + A (\pm) H \]

You answered, “50 foot lengths.”

WRONG.

RETURN TO PAGE 25
EP = NP + FL + A (±) H

APPLIANCES (A)

There is loss of pressure any time an appliance (A) is added to a hoselay. This loss of pressure is due to appliance friction loss. These losses vary widely as they are affected by the appliance size, fittings, bends, design, condition, and rate of flow. As a result, appliance friction loss has to be added to hoselays when computing engine pressure.

<table>
<thead>
<tr>
<th>Appliance</th>
<th>Pressure (PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forestry Tee</td>
<td>5</td>
</tr>
<tr>
<td>Wye, Siamese</td>
<td>10</td>
</tr>
<tr>
<td>Manifolds</td>
<td>10</td>
</tr>
<tr>
<td>Portable Monitors</td>
<td>15</td>
</tr>
<tr>
<td>Engine (Relay Pumping)</td>
<td>20</td>
</tr>
<tr>
<td>Standpipe (Head not included)</td>
<td>25</td>
</tr>
<tr>
<td>Ladder Pipe 100 foot E-One</td>
<td>90</td>
</tr>
<tr>
<td>50 foot Telesquirt</td>
<td>65</td>
</tr>
</tbody>
</table>

TURN TO PAGE 30
EP = NP + FL + A (±) H

Appliance friction loss is added when computing engine pressure whenever an appliance is used in a hoselay because ___________.

1) There is a loss of pressure any time an appliance is added.

TURN TO PAGE 31

2) Appliances are heavy.

TURN TO PAGE 32
\[EP = NP + FL + A (\pm) H \]

YOU ANSWERED CORRECTLY!

Appliances in a hoselay cause additional friction loss due to the extra couplings and change in the direction of flow. Whenever an appliance is used, this additional friction loss must be added when computing engine pressure.

PLEASE CONTINUE TO PAGE 33
EP = NP + FL + A (±) H

Well, since you missed this one, it must be time for a short break.

After you are refreshed, RETURN TO PAGE 29 and try it again.

YOU CAN DO IT!
\[EP = NP + FL + A (\pm) H \]

ELEVATION DIFFERENTIAL - HEAD (\pm H)

Note: The nozzle is either above (+) or below (-) the pump.

Water weighs 8.35 pounds per gallon. Therefore, on hoselays below the pump, the weight of the water traveling downhill is going to increase the pressure (PSI) in the hose due to gravity.

Likewise, on hose lays above the pump, the weight of the water is working against the pump. An increase in pump pressure is necessary to move the water above the pump. Elevation differential, either above or below the pump, must be known in order to compensate engine pressure to meet the needs of the hoselay.

TURN TO PAGE 34
EP = NP + FL + A (±) H

Elevation differential, either above or below the pump, must be known in order __________.

1) To increase or decrease engine pressure to meet the needs of the hoselay.

TURN TO PAGE 35

2) To allow the Pump Operator to select the proper nozzle or tip.

TURN TO PAGE 36
EP = NP + FL + A (±) H

You answered, “To increase or decrease engine pressure to meet the needs of the hoselay.”

RIGHT!

TURN TO PAGE 37 AND CONTINUE
EP = NP + FL + A (±) H

OOPS, YOU MISSED THIS ONE.

RETURN TO PAGE 33 AND TRY IT AGAIN
CHAPTER I
SUMMARY

ENGINE PRESSURE

1) Engine pressure is the amount of pressure in PSI registering on the pressure gauge at the discharge side of the pump. Engine pressure is the major controlling factor, which changes nozzle pressure or volume discharge.

2) The formula for solving hydraulics problems is:

 \[\text{EP} = \text{NP} + \text{FL} + A (\pm) H \]

3) Facts which you must know as a Pump Operator in order to determine engine pressure (EP) are:

 A. Nozzle Pressure (NP)
 B. Size of tip or nozzle (FL)
 C. Diameter of hose (FL)
 D. Length of hose in lay (FL)
 E. Appliance (A)
 F. Elevation differential, either above or below from pump to nozzle (±H)

TURN TO PAGE 38
Chapter II

WORKING THE BASIC HYDRAULICS FORMULA

\[EP = NP + FL + A (\pm) H \]
WORKING THE BASIC HYDRAULICS FORMULA

In this portion of the programmed text, you are going to work with the basic hydraulics formula: \(EP = NP + FL + A (\pm) H \). Then, taking each factor, you will begin to solve problems. You will begin with \(NP \) (Nozzle Pressure).

\(EP = NP + FL + A (\pm) H \)

To determine Engine Pressure (EP) the first part of the formula to be solved is Nozzle Pressure (NP). Nozzle Pressure has to be added in the formula when nozzles are used. This pressure (PSI) is required because it is the pressure, which is needed to makes the solid stream (tip) or fog stream (combination nozzle) operate effectively. If Nozzle Pressure (NP) were not added into the formula, you would not have an effective fire stream.

It is necessary to standardize some terms when referring to nozzles. This enables you to operate in the field with other firefighters, using the same language.

TURN TO PAGE 40
EP = NP + FL + A (±) H

Solid Streams

On any hoselay producing a solid stream, whether the stream is being produced by hand held lines or by a master stream appliance, the nozzle is called a tip.

The following Nozzle Pressure (NP) is to be used in computing Engine Pressure (EP) for solid streams.

NP 50 PSI … Hand Held Tip

NP 80 PSI … Master Stream Appliance Tip

Fog Streams

On any hoselay producing fog streams, whether the streams are being produced by hand held lines or by a master stream appliance, the nozzle is called a combination nozzle.

The following Nozzle Pressure (NP) is to be used in computing Engine Pressure (EP) for fog streams:

NP 100 PSI … Hand Held Combination Nozzle

NP 100 PSI … Master Stream Combination Nozzle

TURN TO PAGE 41
\[EP = NP + FL + A (\pm) H \]

The following examples illustrate the symbols used (T for tip or C for combination) in all of the subsequent problems to indicate the type of nozzle on the hoselay.

(Hand Held) T

(Master Stream) T

(Master Stream) T

(Hand Held) C

(Master Stream) C

TURN TO PAGE 42
\[EP = NP + FL + A (\pm) H \]
EP = \textbf{NP} + \textbf{FL} + A (±) H

1) Solve

Write in NP

NP = __________

\textbf{TURN TO PAGE 44 FOR THE CORRECT ANSWER}
2) **ANSWER:** \(NP = 50 \, \text{PSI} \)

Remember that on all hand held tips the most effective Nozzle Pressure is 50 PSI. Effective in this case means it is easier and safer for firefighters to maneuver and operate the hand line.

3) **Solve**

Write in the NP

\[NP = \underline{} \]

TURN TO PAGE 45 FOR THE CORRECT ANSWER
\[
EP = NP + FL + A \pm H
\]

2) **ANSWER:** \(NP = 100 \text{ PSI} \)

All combination nozzles, whether hand held or on master stream appliances, are designed to operate at 100 PSI, and their GPM flows are calculated for 100 PSI Nozzle Pressure.

However, you and your firefighter may find that less nozzle pressure may be easier and safer to operate on the fireground. Work with your Company Officer in determining what pressures will be most effective in specific situations, (e.g. interior vs. exterior firefighting, various hose sizes, and types of combination nozzles, etc.).

Just keep in mind that for test purposes, 100 PSI NP will be used for all combination nozzle problems, whether hand held or master stream.

3) **Solve**

Write in the NP

\[
NP = \underline{__________}
\]

TURN TO PAGE 46 FOR THE CORRECT ANSWER
EP = NP + FL + A (±) H

3) **ANSWER:** NP = 80 PSI

On master stream appliances with straight bore tips; our standard nozzle pressure is 80 PSI.

4) **Solve**

Write in the NP

NP = _________

TURN TO PAGE 47 FOR THE CORRECT ANSWER
\[EP = NP + FL + A (±) H \]

4) **ANSWER:** \(NP = 100 \text{ PSI} \)

Remember that with combination nozzles it makes no difference whether it is hand held or on a master stream appliance, the Nozzle Pressure (NP) is always 100 PSI.

If anything is unclear with regards to Nozzle Pressure, return to page 39 and cover the material again. If you understand Nozzle Pressure, turn to page 48 and begin working with the next factor of the Hydraulics Formulas: COMPUTING FRICTION LOSS (FL)

TURN TO PAGE 48
\[\text{EP} = \text{NP} + \text{FL} + A (\pm) H \]

COMPUTING FRICTION LOSS (FL)

When two items rub together there is a loss of energy. This loss is caused by friction. This also applies to water flowing through couplings, changing direction around curves and kinks, and rubbing on the interior rubber surface of a firehose.

In order to produce effective fire streams, the amount of Friction Loss (FL) in the firehose, between the engine and the nozzle, must be known. This Friction Loss is determined by the amount of water flowing in gallons per minute (GPM). The greater the GPM in a given size and length of hose, the greater the Friction Loss. Since the amount of hose used between the engine and the nozzle will not always be the same, it is easiest to consider Friction Loss in terms of a common unit length of hose.

Friction Loss (FL) is therefore expressed in pounds per square inch (PSI) per 100 feet of hose.
\[EP = NP + FL + A (\pm) H \]

In order to produce effective fire streams you must know the amount of Friction Loss in the firehose, between the engine and the nozzle. **Friction Loss calculations are computed in ____ feet of hose.** Therefore, each length added, whether Head (\(\pm H \)), increases Friction Loss.

1) 50 foot lengths

TURN TO PAGE 50

2) 100 foot lengths

TURN TO PAGE 50
EP = NP + FL + A (±) H

If you answered 50 foot lengths, you should pay closer attention to what you are reading.

If you answered 100 foot lengths, YOU ARE CORRECT! You seem to have not only grasped how to follow directions in the text, but you have also comprehended the information contained herein.

All friction loss factors are computed in 100 foot lengths of hose to make it easier to compute Friction Loss in the field. Here is an example:

First, let's say you have a 1 inch smooth bore tip on the end of a 2 ½ inch hand held hose. If you look at the Field Hydraulics Reference Sheet (FHRS), which is in the back of this manual, and you'll see that a 1 inch tip on a 2 ½ inch hose has a Friction Loss factor of 9 PSI. This 9 PSI Friction Loss is for each 100 foot of 2 ½ inch hose, with a hand held, smooth bore tip.

Based on the information above, a 1000 foot 2 ½ inch hoselay with a 1 inch tip has how much Friction Loss?

1) 90 PSI FL

2) 160 PSI FL

1" T

1 2 3 4 5 6 7 8 9 10

TURN TO PAGE 51

TURN TO PAGE 52
EP = NP + FL + A \,(\pm\,)\,H

You answered 90 PSI FL.

Congratulations!

TURN TO PAGE 53 AND CONTINUE
EP = NP + FL + A (±) H

GO BACK TO PAGE 50 AND CHECK YOUR MATH
\[EP = NP + FL + A (\pm) H \]

FACTS ABOUT FRICTION LOSS

1) The smaller the diameter of hose, the more Friction Loss involved.

2) Friction Loss is computed in 100 foot lengths of hose. So each length of hose added, Head (\(\pm H\)), increases Friction Loss.

3) The larger the diameter of hose, the less Friction Loss involved.

4) 1 \(\frac{1}{2}\) inch hose has approximately 2 times the Friction Loss of 1 \(\frac{3}{4}\) inch hose.

5) 1 \(\frac{3}{4}\) inch hose has approximately 6 times the Friction Loss of 2 \(\frac{1}{2}\) inch hose.

6) 2 \(\frac{1}{2}\) inch hose has approximately 8 times the Friction Loss of 4 inch hose.

TURN TO PAGE 54
EP = NP + FL + A (±) H

REDUCING FRICTION LOSS

There are four methods of overcoming excessive Friction Loss (FL) in hose lines while working on a fire:

1) Reduce the nozzle pressure. If the nozzle pressure is reduced, the discharge will be less; therefore, the Friction Loss will decrease.

 CAUTION: *This may prevent the fire stream from performing the required task.*

2) Reduce the size of the nozzle tip and maintain the same nozzle pressure. Reducing the tip size and maintaining the same nozzle pressure reduces the discharge GPM.

 CAUTION: *The quantity of water being discharged may not be sufficient to cool the fire in order to accomplish extinguishment.*

3) Lay a parallel hose line, or increase the hose size. With all other factors remaining constant, two parallel lines of hose will have one-fourth the Friction Loss of a single line of the same diameter and length and carrying the same quantity of water. Three lines will have one-ninth the Friction Loss of a single line, and four lines will have one-sixteenth the Friction Loss.

4) Use a relay pumping operation. This operation will allow for two or more pumps to move the water at manageable pressures.

TURN TO PAGE 55
\[EP = NP + FL + A (\pm) H \]

If the nozzle pressure is reduced, the discharge will be less; therefore the Friction Loss will decrease. What could happen to the fire stream if this procedure is used to lower the Friction Loss?

1) The fire stream will have less velocity but flow will still be effective.

2) The fire stream will have less velocity flow and might not be an effective fire stream.
$$EP = NP + FL + A (\pm) H$$

You answered that the fire stream will have less velocity and flow, but will still be effective.

YOU ARE PARTIALLY CORRECT.

The fire stream will have less velocity and flow. But remember, there might not be enough water at sufficient pressure to control the fire.

As a Pump Operator you should only use this procedure when you are sure it won’t endanger your firefighter.

TURN TO PAGE 58
EP = NP + FL + A (±) H

You answered that the fire stream will have less velocity and flow and might not be an effective fire stream.

CORRECT YOU ARE!

However, when using this procedure to reduce Friction Loss, you must be sure it won’t endanger your firefighter.

TURN TO PAGE 58
\[EP = NP + FL + A (\pm) H \]

Reducing the size of the nozzle and maintaining the same nozzle pressure reduces the Friction Loss, but also reduces the flow.

What could happen to the fire stream if this procedure is used to lower the Friction Loss?

1) The fire stream will have less flow, but will still be effective.

2) The fire stream will have less flow, but might not be a desired fire stream.
EP = NP + FL + A (±) H

You answered, “The fire stream will have less flow, but will still be effective.”

WRONG!

How could it still be effective with less flow? With less water, your fire stream has less cooling capacity. Using this procedure to reduce Friction Loss could get your firefighter into trouble, and you must first carefully consider all possible ramifications.

TURN TO PAGE 61
EP = NP + FL + A (±) H

You answered, “The fire stream will have less flow, but might not be an effective fire stream.”

THAT IS CORRECT.

The procedure to reduce Friction Loss is the same as the procedure to reduce nozzle pressure. This procedure also requires careful consideration, before it is used because it can endanger the firefighter manning the nozzle.

TURN TO PAGE 61
$\text{EP} = \text{NP} + \text{FL} + A (\pm) \text{H}$

FRICTION LOSS FORMULA

Although there are several Friction Loss formulas, this work book has adopted IFSTA’s formula of CQ^2L for determining Friction Loss in fire hose. This formula was developed by IFSTA for the lightweight hose and pyrolite couplings that are in use in the fire service today.

The following pages show how to solve the formula and provide you with problems to work on your own.

FRICTION LOSS (FL) = CQ^2L

The formula used to determine Friction Loss in hose is CQ^2L.

- $C =$ Coefficient
- $Q^2 = (\text{GPM}/100)^2$
- $L =$ Length of hose/100

Coefficients are fixed or constant values given to each hose, depending on the diameter. They are used as the “C” in the CQ^2L formula. The smaller the hose diameter, the greater the friction loss for a given GPM. Therefore, you will see that the coefficient is greater for smaller hose than larger hose.

TURN TO PAGE 62
\[EP = NP + FL + A (\pm) H \]

I. \(C = \text{Coefficient} \)

Coefficients for Single Lines

<table>
<thead>
<tr>
<th>Size</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1”</td>
<td>150.0</td>
</tr>
<tr>
<td>1 ½”</td>
<td>24.0</td>
</tr>
<tr>
<td>1 ¾”</td>
<td>15.5</td>
</tr>
<tr>
<td>2 ½”</td>
<td>2.0</td>
</tr>
<tr>
<td>4”</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Coefficients for Multiple Lines

- Two 2 ½” = 0.5
- Three 2 ½” = 0.22
- One 4” + One 2 ½” = 0.12

II. \(Q^2 = (\text{GPM}/100)^2 \)

GPM refers to the amount of water flowing.

\(Q^2 \) is the GPM divided by 100 and then squared.

For example: \(Q^2 = (200 \text{ GPM}/100)^2 = (2 \text{ GPM})^2 = 4 \text{ GPM} \)

TURN TO PAGE 63
\[EP = NP + FL + A (\pm) H \]

III. \(L = (\text{Length of line}/100) \)

\(L \) is the length of the hoselay divided by 100.

Example:

250 feet of hose, divided by 100 equals 2.5.

\(\frac{250}{100} = 2.5 \)

Now let’s put it all together and work a problem to determine the Friction Loss of a hoselay putting it all together. Assume you have a single 2 ½ inch hoselay, 250 feet, with 250 GPM flowing from the tip or nozzle.

\[FL = CQ^2L \]

\[FL = 2 \times \left(\frac{250}{100} \right)^2 \times \left(\frac{250}{100} \right) \]

\[FL = 2 \times (2.5)^2 \times 2.5 \]

\[FL = 2 \times 6.25 \times 2.5 \]

\[FL = 31 \text{ PSI} \]

TURN TO PAGE 64
\[EP = NP + FL + A (\pm) H \]

Solve

Write in answers

\[
\begin{align*}
NP &= \underline{} \\
FL &= \underline{} \\
A &= \underline{} \\
\pm H &= \underline{} \\
EP &= \underline{}
\end{align*}
\]

TURN TO PAGE 65
\[EP = NP + FL + A (\pm) H \]

If you answered 48 PSI,

YOU ARE CORRECT!

TURN TO PAGE 67

If you did not,

TURN TO PAGE 66 FOR THE CALCULATIONS
\[EP = NP + FL + A (\pm) H \]

Answer

\[FL = CQ^2L \]

\[FL = C \times (\text{GPM}/100)^2 \times (\text{length of hose}/100) \]

\[FL = 2 \times (200/100)^2 \times (600/100) \]

\[FL = 2 \times (2)^2 \times 6 \]

\[FL = 2 \times 4 \times 6 \]

FL = 48 PSI

TURN TO PAGE 67
EP = NP + FL + A (±) H

DETERMINING FRICTION LOSS FOR APPLIANCES (A)

There is loss of pressure any time an Appliance (A) is added to a hoselay. These losses vary widely as they are affected by size, fittings, bends, designs, condition, and rate of flow. Appliance friction loss has to be added to hoselays when computing engine pressure. The following is a list of Appliances and their friction loss, which you should remember and be able to recall when computing hydraulics problems:

1. Forestry Tee 5 PSI
2. Wye/Siamese, water thief 10 PSI
3. Manifolds 10 PSI
4. Portable Monitor 15 PSI
5. Engine – Relay pumping 20 PSI
6. Standpipe 25 PSI (not including head)
7. Ladder Pipe 100 foot E-One 90 PSI (head included)
8. Tele-Squirt 50 feet 65 PSI (head included)

TURN TO PAGE 68
EP = NP + FL + A (±) H

1) Solve

Write in answer for Appliance friction loss (A)

\[A = \text{______________} \]

TURN TO PAGE 69
EP = NP + FL + A (±) H

1) ANSWER: A = 10 PSI

Anytime a gated wye is placed in a hoselay, you must add 10 PSI for Appliance friction loss.

2) Solve

Write in answer for Appliance friction loss (A)

A = ____________________

TURN TO PAGE 70
EP = NP + FL + A (±) H

2) ANSWER: A = 25 PSI

When pumping into a standpipe, you must add 25 PSI for Appliance FL. It does not make any difference what the height of the building is; it is always 25 PSI for FL only. This does not include head.

3) Solve

Write in answer for Appliance friction loss (A)

A = _________________

TURN TO PAGE 71
EP = NP + FL + A (±) H

3) ANSWER: \(A = 15 \text{ PSI} \)

With portable monitors you must add 15 PSI for Appliance FL.

4) Solve

Write in answer for Appliance friction loss (A)

\[A = \underline{} \]

TURN TO PAGE 72
EP = NP + FL + A (±) H

4) **ANSWER: A = 5 PSI**

With a 1 ½ inch x 1 inch Forestry Tee, you must add 5 PSI for each tee installed in the hoselay.

When you are solving hydraulics problems, you must add in Appliance friction loss. You only have 8 Appliances to remember.

If you are still unsure of how to solve Appliance friction loss, **RETURN TO PAGE 67**

Otherwise,

MOVE ON TO PAGE 73
$$\text{EP} = \text{NP} + \text{FL} + A (\pm) H$$

PRINCIPLES OF HEAD PRESSURE (\pm) H

Head pressure is also called lift, back pressure, gravity loss, or gain. When hose lines are laid up or down or elevations, such as inclines, stairways, fire escapes, canyons, or the face of a building, the pressure loss or gain in pounds per square inch which is exerted by the Head of water must be compensated for.

On hoselays where the nozzle is below the pump, you must subtract head.

On hoselays above the pump, you must add head.

Head is measured in terms of feet of water: One foot of head is equivalent to a column of water one foot high.

Head is pressure; a column of water one foot high by 1 square inch weighs .434 pounds at its base regardless of the size or shape of the vessel it is in. (See illustration)

Therefore, for each foot of head, water exerts a pressure of .434 pounds per square inch at the base.

Every 2.3 feet of head develops a pressure of one pound per square inch. **Head pressure is proportional to the height of the liquid column alone, and not to the size or shape of the vessel.**

TURN TO PAGE 74
\[EP = NP + FL + A (\pm) H \]

Head is very much like climbing up or down a ladder. As you climb up a ladder, you must exert strength (pressure) in your legs and arms to reach the desired elevation. When descending a ladder, gravity exerts a pull upon your body. If you lost your footing and fell, your body would gain tremendous downward pressure. The amount of pressure developed would determine the force of impact. The higher the fall in elevation, the greater the pressure.

Let's fill a 5 inch diameter pipe 100 feet high with water. **What is the Head Pressure at the base?**

For each foot of head, water exerts a pressure of .434 pounds per square inch at the base. Remember the pressure is proportional to the height of the liquid column alone. Not to the size or shape of the vessel it is in.

TURN TO PAGE 75
\[EP = NP + FL + A (\pm) H \]

To figure the amount of head at the base of the 100 foot pipe you must multiply by .434 PSI because each foot of head creates .434 PSI.

\[
\begin{align*}
\text{100 foot pipe} \\
\times .434 \text{ PSI 1 inch of Head} \\
400 \\
\hline
300 \\
400 \\
\hline
43.400 \text{ PSI}
\end{align*}
\]

So the 100 foot pipe has 43.4 PSI head at the base of the pipe.

REMEMBER that PSI stands for POUNDS PER SQUARE INCH. Therefore the 5 inch base is not a factor in determining the pressure at the bottom of the pipe.

TURN TO PAGE 76
EP = NP + FL + A (±) H

HEAD PRESSURE MUST BE COMPENSATED FOR BECAUSE:

In hose lays below the pump there is a pressure gain, which could cause the firefighter to lose control of the hose.

In hoselays above the pump the weight of the water is working against the pump. If not compensated for, it could cause insufficient nozzle pressure and an ineffective hose stream.

In computing head, one foot of head either above or below the pump is _____ PSI.

1) .434 PSI

TURN TO PAGE 77

2) .534 PSI

TURN TO PAGE 78
EP = NP + FL + A (±) H

You answered, “.434 PSI for each 1 foot of Head either above or below the pump.”

EXCELLENT!

TURN TO PAGE 79 AND CONTINUE
EP = NP + FL + A (±) H

WRONG

Take enough time here before moving on to remember:

.434 PSI for each 1 foot of Head, either above (+) or below (-) the pump.

TURN TO PAGE 79
EP = NP + FL + A (±) H

When pumping water above the pump, what must you do when calculating engine pressure?

1) Subtract Head.

TURN TO PAGE 80

2) Add Head.

TURN TO PAGE 81
You said head must be subtracted on hoselays pumping water above the pump. THAT’S INCORRECT. Let’s look at it another way.

Assume you are going to run up a steep hill as opposed to running down it. You will exert more energy running up the hill and you will tire easier. So anytime water is being pumped above the pump, you must add head.

TURN TO PAGE 82
$$EP = NP + FL + A (\pm) H$$

CORRECT YOU ARE.

Any time water is pumped above the pump, you must add Head.

TURN TO PAGE 82
\[EP = NP + FL + A (\pm) H \]

When you are pumping water below the pump, what must you do when calculating engine pressure?

1) Subtract Head.

TURN TO PAGE 83

2) Add Head.

TURN TO PAGE 84
EP = NP + FL + A (±) H

RIGHT ON!

When water is being pumped below the pump, Head must be subtracted.

TURN TO PAGE 85 AND CONTINUE
\[\text{EP} = \text{NP} + \text{FL} + A \ (\pm) \ H \]

INCORRECT!!

I think you are having a problem grasping Head Pressure and what to do with it in hydraulics problems.

RETURN TO PAGE 73 AND BEGIN AGAIN
\[EP = NP + FL + A (\pm) H \]

COMPUTING HEAD IN STRUCTURES

For each floor (12 feet) above the pump, add 5 PSI for Head. **Don’t add Head for the first floor because the pump is on the same level as the first floor.**

The average distance between floors in buildings is 12 feet. So .434 times 12 is approximately 5 PSI Head per floor. In determining Head for buildings, all you have to remember is **Head equals 5 PSI per floor.**

TURN TO PAGE 86
\[EP = NP + FL + A (\pm) H \]

1) Solve

Write in answer for Head (\(\pm H\))

\[\pm H = \text{__________} \]

TURN TO PAGE 87 FOR THE CORRECT ANSWER
\[\text{EP} = \text{NP} + \text{FL} + A \pm H \]

1) **ANSWER:** \(H = +15 \text{ PSI} \)

In structures you don’t add the first floor because the engine is at the same level as the first floor.

2) **Solve**

Write in answer for Head (\(\pm H \))

\[\pm H = \quad \]

TURN TO PAGE 88 FOR THE CORRECT ANSWER
EP = NP + FL + A (±) H

2) **ANSWER:** $H = +30$ PSI

Don’t add Head for the first floor. Six floors at 5 PSI each equals +30 PSI

3) **Solve**

Write in answer for Head (±H)

±H = __________

TURN TO PAGE 89 FOR THE CORRECT ANSWER
EP = NP + FL + A (±) H

3) ANSWER: \(H = -15 \text{ PSI} \)

Below the pump you must subtract Head. So three floors below the pump at 5 PSI per floor

If you are having problems computing Head in structures, RETURN TO PAGE 85 AND BEGIN AGAIN.

If you answered the Head problems for structures correctly, you are doing great. TURN TO PAGE 90 AND CONTINUE.
EP = NP + FL + A (±) H

COMPUTING HEAD FOR WILDLAND HOSELAYS

The most difficult task in computing head for wildland hoselays is estimating elevation changes either above or below the pump. Your estimates will have to be approximate.

You will find that by using increments of 100 feet, 50 feet, or 25 feet, your estimates will be close and all you have to remember are three figures for head.

<table>
<thead>
<tr>
<th></th>
<th>ABOVE PUMP</th>
<th>BELOW PUMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 feet</td>
<td>+43 PSI</td>
<td>-43 PSI</td>
</tr>
<tr>
<td>50 feet</td>
<td>+22 PSI</td>
<td>-22 PSI</td>
</tr>
<tr>
<td>25 feet</td>
<td>+11 PSI</td>
<td>-11 PSI</td>
</tr>
</tbody>
</table>

Computing head for wildland hoselays is the same as for structures. Just remember that any time the hoselay is above the pump, you must add Head, and any time that it is below the pump, you must subtract head. The figures for wildland hoselays that are given above will be used throughout the rest of the text. The figure of 5 PSI per floor that is used for structure fires should not be used for test purposes or when working a wildland problem.

TURN TO PAGE 91
EP = NP + FL + A (±) H

1) Solve

Write in answer for Head (±H)

±H = __________

TURN TO PAGE 92 FOR THE CORRECT ANSWER
EP = NP + FL + A (±) H

1) ANSWER: \(H = +43 \text{ PSI} \)

Above the pump you must add Head, 100 feet is +43 PSI.

2) Solve

Write in the answer for Head (±H)

\[±H = \ldots \]

TURN TO PAGE 93 FOR THE CORRECT ANSWER
\[EP = NP + FL + A (\pm) H \]

2) \textit{ANSWER: } \(H = -22 \text{ PSI} \)

Below the pump you must subtract Head, 50 feet of elevation below the pump equals -22 PSI Head pressure.

3) \textbf{Solve}

\[\pm H = \boxed{\text{___________}} \]

\textit{TURN TO PAGE 94 FOR THE CORRECT ANSWER}
EP = NP + FL + A (±) H

3) **ANSWER:** \(H = +65 \text{ PSI} \)

Above the pump you must add Head, 150 feet of elevation above the pump \(\times 0.434 \) PSI/foot = +65 PSI.

4) **Solve**

Write in answer for Head (±H)

\[\pm H = \text{______________} \]

TURN TO PAGE 95 FOR THE CORRECT ANSWER
4) \textit{ANSWER: } $H = -86\text{ PSI}$

Below the pump you must subtract head. 100 feet is 43 PSI, and because it is a total of 200 feet, the total head pressure equals 2×43 or -86 PSI.

If you are having problems with head in wildland hoselays, \textbf{RETURN TO PAGE 90 AND BEGIN AGAIN.}

If you answered all the head problems for wildland hoselays correctly, you are doing fine.

\textbf{TURNT TO PAGE 96 AND CONTINUE.}
EP = NP + FL + A (±) H

CHAPTER II
SUMMARY

1) NOZZLE PRESSURE (NP)

Nozzle Pressure is the amount of pressure required to make the nozzle operate effectively and must be added in to the problem when you are computing hydraulics problems.

Remember that we standardized terminology for nozzles. Tips produce a solid stream and combination nozzles produce fog streams.

Standard Nozzle Pressures

Tips

NP 50 PSI Hand Held Tip
NP 80 PSI Master Stream Appliance Tip

Combination Nozzles

NP 100 PSI Hand Held Fog Nozzle
NP 100 PSI Master Stream Fog Nozzle

2) FRICTION LOSS (FL)

When two items rub together there is a loss of energy caused by friction. This also applies to water rubbing on the interior surface of the fire hose. In order to produce effective fire streams, the amount of Friction Loss in the hose, between the engine and nozzle, must be calculated and compensated for.

The smaller the diameter of hose, the more Friction Loss involved. The larger the diameter of hose, the less Friction Loss involved.

Friction Loss is computed per 100 foot lengths of hose whether the hose is laid straight out from the pump uphill or downhill.

CONTINUE TO PAGE 97
EP = NP + FL + A (±) H

The formula for computing friction loss in hose is $FL = CQ^2L$

C = Coefficient for number and diameter of hose

$Q^2 = \frac{(GPM/100)^2}{100}$

$L = \frac{(\text{length of hose/100})}{100}$

$C = \text{COEFFICIENT}$

<table>
<thead>
<tr>
<th>Single Lines</th>
<th>Diameter</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"</td>
<td>= 150.0</td>
<td></td>
</tr>
<tr>
<td>1 ½"</td>
<td>= 24.0</td>
<td></td>
</tr>
<tr>
<td>1 ¾"</td>
<td>= 15.5</td>
<td></td>
</tr>
<tr>
<td>2 ½"</td>
<td>= 2.0</td>
<td></td>
</tr>
<tr>
<td>4"</td>
<td>= 0.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiple Lines</th>
<th>Diameter</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two 2 ½"</td>
<td>= 0.5</td>
<td></td>
</tr>
<tr>
<td>Three 2 ½"</td>
<td>= 0.22</td>
<td></td>
</tr>
<tr>
<td>One 4" + One 2 ½"</td>
<td>= 0.12</td>
<td></td>
</tr>
</tbody>
</table>

$Q^2 = \frac{(GPM/100)^2}{100}$

Q^2 is the GPM flowing from a tip or nozzle, divided by 100, and then squared.

$L = \frac{(\text{length of hose/100})}{100}$

L is the length of the hose divided by 100.

TURN TO PAGE 98
EP = NP + FL + A (+) H

3) REDUCING FRICTION LOSS (FL)

There are four methods of overcoming excessive friction loss in hose lines:

A. Reduce the nozzle pressure. If the nozzle pressure is reduced, the GPM will be less; therefore, the friction loss will decrease.
 CAUTION: This may prevent the fire stream from performing the required task.

B. Reduce the size of the nozzle, but maintain the same nozzle pressure. Reducing the nozzle size while maintaining the same nozzle pressure also reduces the GPM.
 CAUTION: The quantity of water being discharged might not be sufficient to cool the fire in order to accomplish extinguishment.

C. Lay a parallel hose line or increase the hose size. With all other factors remaining constant, two parallel lines of hose will have one-fourth the friction loss of a single line (same diameter and length) carrying the same quantity of water. Three lines will have one-ninth the friction loss of a single line, and four lines will have one-sixteenth the friction loss.

D. Use a relay pumping operation. This operation will allow for two or more pumps to move the water at manageable pressures.

4) APPLIANCES (A)

There is loss of pressure any time an appliance is added to a hoselay. This loss in pressure (Appliance Friction Loss) must be added to hoselays that have appliances in order to determine the accurate Engine Pressure (EP)

Appliance Friction Loss

1. Forestry Tee (1” x 1 ½”) 5 PSI FL
2. Wye/Siamese, Water Thief 10 PSI FL
3. Portable Monitor 15 PSI FL
4. Engine (relay pumping) 20 PSI FL
5. Stand Pipe 25 PSI FL
6. Ladder Pipe 100 foot E-One 90 PSI FL (head included)
7. Tele-Squirt 50 feet 65 PSI FL (head included)
EP = NP + FL + A (±) H

5) **HEAD (± H)**

Head is also called lift, back pressure, gravity loss, or gain. When hose lines are laid up or down an elevation such as inclines, stairways, fire escapes, canyons or the face of a building, the pressure loss or gain in pounds per square inch which is exerted by the Head of water, must be compensated for. On hoselays where the nozzle is below the pump you must **subtract** Head. On hoselays above the pump you must **add** Head.

Computing Head for Structures

For each floor (12 feet) above the pump, add 5 PSI for Head. Do not add Head for the first floor because the pump is on the same level as the first floor.

Computing Head For Wildland Hoselays

Use increments of 100 feet, 50 feet, or 25 feet.

<table>
<thead>
<tr>
<th></th>
<th>ABOVE PUMP</th>
<th>BELOW PUMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 feet</td>
<td>+43 PSI</td>
<td>-43 PSI</td>
</tr>
<tr>
<td>50 feet</td>
<td>+22 PSI</td>
<td>-22 PSI</td>
</tr>
<tr>
<td>25 feet</td>
<td>+11 PSI</td>
<td>-11 PSI</td>
</tr>
</tbody>
</table>

TURN TO PAGE 100 AND LEARN HOW TO USE THE FHRS
CHAPTER III

DETERMINING NOZZLE REACTION

\[1.57 \, d^2 \, \text{NP} \quad .505 \times \text{GPM} \]
When water flows through a nozzle at a given pressure, a force on the backside of the nozzle is transformed into water velocity as the water moves through the nozzle. This counterforce, known as **Nozzle Reaction** illustrates Issac Newton’s third law of motion. This law states that for every action there is an equal and opposite reaction. Therefore, the greater the nozzle discharge pressure, the greater the **Nozzle Reaction**.

It is the **Nozzle Reaction** that limits the amount of nozzle pressure that can be supplied to an attack line. Fire attack can be hampered, equipment can be damaged, and most importantly personnel can be injured by excessive nozzle reaction.

TURN TO PAGE 102
When water flows through a nozzle at a given pressure, a force on the backside of the nozzle is created. What is this called?

1) Nozzle Velocity

2) Nozzle Reaction
If you answered Nozzle Velocity,

YOU ARE INCORRECT.

If you answered Nozzle Reaction,

YOU ARE CORRECT!

Remember that Nozzle Reaction is the counterforce created when water is discharged out of a nozzle. Nozzle Reaction is the single biggest factor that limits the amount of nozzle pressure.

TURN TO PAGE 104
The amount of Nozzle Reaction experienced during hose line operations depends upon the type of nozzle being used. Combination nozzles have greater nozzle reactions than solid streams. This is because they are primarily operated at higher nozzle pressures.

To calculate the amount of Nozzle Reaction in a straight tip nozzle (TIP), use the formula:

\[NR = 1.57 \ d^2 \ NP \]

To calculate the amount of Nozzle Reaction in a combination nozzle, use the formula:

\[NR = 0.505 \times GPM \]
The amount of Nozzle Reaction experienced during hose line operations depends upon the type of nozzle being used. A ___________ has greater nozzle pressure than a __________.

1) Combination Nozzle, Straight Tip

TURN TO PAGE 107

2) Straight Tip, Combination Nozzle

TURN TO PAGE 106
1.57 d² NP \quad .505 \times \text{GPM}

You answered that a Straight Tip has a greater nozzle pressure than a Combination Nozzle.

YOU ARE INCORRECT.

Remember that combination nozzles are normally pumped at higher pressure and will have a higher Nozzle Reaction.

If you are having difficulties understanding Nozzle Reaction, TURN TO PAGE 101 and review.
You answered that a combination nozzle has a greater nozzle pressure than a straight tip.

YOU ARE CORRECT!

TURN TO PAGE 108
To calculate the amount of Nozzle Reaction in a Straight Tip, use the formula:

\[
NR = 1.57 \, d^2 \, NP
\]

- **NR** = Nozzle Reaction in Pounds
- **1.57** = A Constant
- **d^2** = Nozzle diameter in inches squared
- **NP** = Nozzle Pressure in PSI

To calculate the amount of Nozzle Reaction in a combination nozzle, use the formula:

\[
NR = 0.505 \times GPM
\]

- **NR** = Nozzle Reaction in Pounds
- **0.505** = A Constant
- **GPM** = Gallons Per Minute

TURN TO PAGE 109
1.57 d² NP \[\cdot \] .505 x GPM

1) Solve

Determine the Nozzle Reaction of a hose line equipped with a 1 inch tip operating at a nozzle pressure of 50 PSI.

\[
NR = 1.57 \ d^2 \ NP \\
NR = 1.57 \ _ \ _ \\
NR = \ _ \ _ \ _ \ _ \\
NR = \ _ \ _ \ _ \ _ \ _ \\
\]

TURN TO PAGE 110
1) ANSWER: \(NR = 78.5 \text{ Pounds} \)

2) Solve

Determine the Nozzle Reaction of a hose line equipped with a combination nozzle operating at a nozzle pressure of 100 PSI, and flowing 250 GPM.

\[
NR = 0.505 \times \text{GPM}
\]

\[
NR = __________
\]

TURN TO PAGE 111
1.57 \, d^2 \, NP \quad 0.505 \, x \, GPM

2) \textit{ANSWER:} \, NR = 126.25 \, Pounds

3) \textbf{Solve}

Determine the \textbf{Nozzle Reaction} of a hose line equipped with a \(\frac{3}{4}\) inch tip operating at a nozzle pressure of 50 PSI.

\[\text{NR} = 1.57 \, d^2 \, \text{NP} \]
\[\text{NR} = 1.57 \, _____ \, _____ \]
\[\text{NR} = \text{__________} \]

\textbf{TURN TO PAGE 112}
3) **ANSWER:** \(NR = 44.15 \text{ Pounds} \)

4) **Solve**

Determine the **Nozzle Reaction** of a master stream equipped with a combination nozzle operating at a nozzle pressure of 100 PSI and flowing 1000 GPM.

\[
\text{NR} = 0.505 \times \text{GPM}
\]

\[
\text{NR} = \underline{}
\]

TURN TO PAGE 113
CHAPTER III

SUMMARY

1) **NOZZLE REACTION (NR)**

When water flows through a nozzle at a given pressure, a force on the backside of the nozzle is transformed into water velocity as the water moves through the nozzle. This counterforce, known as **Nozzle Reaction** illustrates Issac Newton’s third law of motion. This law states that for every action there is an equal and opposite reaction. Therefore, the greater the nozzle discharge pressure, the greater the **Nozzle Reaction**.

It is the **Nozzle Reaction** that limits the amount of nozzle pressure that can be supplied to an attack line. Fire attack can be hampered, equipment can be damaged, and most importantly personnel can be injured by excessive nozzle reaction.

2) **CALCULATING NOZZLE REACTION (NR)**

To calculate the amount of **Nozzle Reaction** in a Straight Tip, use the formula:

\[
NR = 1.57 \times d^2 \times NP
\]

NR = Nozzle Reaction in Pounds

1.57 = A Constant

\(d^2\) = Nozzle diameter in inches squared

NP = Nozzle Pressure in PSI

To calculate the amount of **Nozzle Reaction** in a combination nozzle, use the formula:

\[
NR = 0.505 \times GPM
\]

NR = Nozzle Reaction in Pounds

0.505 = A Constant

GPM = Gallons Per Minute

TURN TO PAGE 114
CHAPTER IV

RELAY PUMPING OPERATIONS

FRICION LOSS + ELEVATION + INTAKE PRESSURE
FRICION LOSS + ELEVATION + INTAKE PRESSURE

Relay Pumping is a pump operation performed to assure adequate flow and to assure that the safety pressure of hose lines is not exceeded. Pump Operators will be required to perform a relay operation when any of the following scenarios develop:

1) When the water supply is inadequate for the required flow needed to perform the operation.

2) When the pressure requirements to supply the required amount of water are too great for one pumper.

3) When the pressure requirements exceed the safe operating limits of the hose lines.

The inability to meet required flow usually occurs when the water source or supply and fire are separated by a long distance. This distance can be a few hundred feet or it can be over a mile in some rural locations. Additionally, due to water main breaks caused by natural disasters, a relay operation may have to be performed to move basic water supplies.

There are several methods that can be used for performing **Relay Pumping**. In all methods used, the Pump Operators must know the following two factors:

1. The required flow to be maintained
2. The length and size of the hose

Additionally, there are two main types of pressure losses that **Relay Pumping** must overcome. These are:

1. Elevation pressure
2. Friction loss in the hose

TURN TO PAGE 116
In order to **Relay Pump**, the Pump Operator must know the following two factors:

1) The required flow to be maintained and the length and size of the hose to be supplied.

2) The required pressure at the fire scene and the size of the hose.
FRICTION LOSS + ELEVATION + INTAKE PRESSURE

You answered, “The required pressure at the fire scene and the size if the hose.”

YOU ARE INCORRECT.

In order to perform Relay Pumping, you must always know the required flow to be maintained and the length and size of the hose to be supplied.

TURN TO PAGE 119 AND CONTINUE.
You answered, “The required flow to be maintained and the length and size of the hose to be supplied.”

YOU ARE CORRECT!

TURN TO PAGE 119 AND CONTINUE.
FRICITION LOSS + ELEVATION + INTAKE PRESSURE

There are certain limitations to Relay Pumping. These limitations are:

Pumpers are rated for a maximum capacity at 150 PSI net pump discharge pressure. If higher pressures are needed, the capacity of the pumper is reduced proportionally.

Pressures are also limited because fire hose should not be used at pressures that exceed annual test pressures.

Intake pressure should never drop below 20 PSI.

TURN TO PAGE 120
The relay pumping operation called the “Constant Pressure Method” is primarily used for long distances over flat ground and allows for all pumpers to relay pump the same discharge pressure at all times. This method is not applicable to our area because most of our rural areas are located in hilly and uneven terrain and water supply differs throughout the response.

In order to work in our geographic area, the Relay Pumping method is a variation of the constant pressure method. This variation does not require the pumpers to be placed at equal lengths, nor does it require water to be wasted by an open discharge draining excessive flow. The variation of the constant pressure method also allows for a pumper to be inserted in any part of the hoselay to make the lay effective.
FRICTION LOSS + ELEVATION + INTAKE PRESSURE

In order to use the variation of the Constant Pressure Method, the Pump Operator will use the following formula:

Required Flow = Friction Loss + Elevation + Intake Pressure.

Example:

At the fire scene, a pumper is supplying a 100 foot (quint) truck, which is flowing 1000 GPM through a combination nozzle. The pumper has laid 500 feet of 4 inch hose. This problem calculates as follows:

NP = 100 PSI
FL = 100 PSI; 20 PSI per 100 feet.
A = 90 PSI
H = 0
IP = 20 PSI (min.)
EP = 310 PSI

Since the total pressure exceeds the safety pressure of the hose and is well above the rated capacity of the pump, the pressure must be split between the pumper and the truck. This problem now calculates as follows:

<table>
<thead>
<tr>
<th>Supply Pump</th>
<th>Fire Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP = 0 PSI</td>
<td>NP = 100 PSI</td>
</tr>
<tr>
<td>FL = 100 PSI</td>
<td>FL = 0 PSI</td>
</tr>
<tr>
<td>A = 0 PSI</td>
<td>A = 90 PSI</td>
</tr>
<tr>
<td>H = 0 PSI</td>
<td>H = 0 PSI</td>
</tr>
<tr>
<td>IP = 20 PSI (min.)</td>
<td>IP = 0 PSI</td>
</tr>
<tr>
<td>EP = 120 PSI</td>
<td>EP = 190 PSI</td>
</tr>
</tbody>
</table>

TURN TO PAGE 122
FRICTION LOSS + ELEVATION + INTAKE PRESSURE

1) Solve

Write in answers

Supply Pump Fire Pump

NP = _______ NP = _______
FL = _______ FL = _______
A = _______ A = _______
H = _______ H = _______
IP = _______ IP = _______
EP = _______ EP = _______

TURN TO PAGE 123
FRICTION LOSS + ELEVATION + INTAKE PRESSURE

1) **ANSWER:**

<table>
<thead>
<tr>
<th></th>
<th>Supply Pump</th>
<th>Fire Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP =</td>
<td>0 PSI</td>
<td>NP = 100 PSI</td>
</tr>
<tr>
<td>FL =</td>
<td>140 PSI</td>
<td>FL = 0 PSI</td>
</tr>
<tr>
<td>A =</td>
<td>0 PSI</td>
<td>A = 90 PSI</td>
</tr>
<tr>
<td>H =</td>
<td>0 PSI</td>
<td>H = 0 PSI</td>
</tr>
<tr>
<td>IP =</td>
<td>20 PSI</td>
<td>IP = 0 PSI</td>
</tr>
<tr>
<td>EP =</td>
<td>160 PSI</td>
<td>EP = 190 PSI</td>
</tr>
</tbody>
</table>

If you solved this problem correctly, OUTSTANDING! If you had some difficulties with this exercise, **RETURN TO PAGE 121**.

TURN TO PAGE 124
FRICITION LOSS + ELEVATION + INTAKE PRESSURE

2) Solve

Supply Pump

<table>
<thead>
<tr>
<th></th>
<th>Fire Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>________</td>
</tr>
<tr>
<td>FL</td>
<td>________</td>
</tr>
<tr>
<td>A</td>
<td>________</td>
</tr>
<tr>
<td>H</td>
<td>________</td>
</tr>
<tr>
<td>IP</td>
<td>________</td>
</tr>
<tr>
<td>EP</td>
<td>________</td>
</tr>
</tbody>
</table>

Write in answers

Supply Pump

- NP = ________
- FL = ________
- A = ________
- H = ________
- IP = ________
- EP = ________

Fire Pump

- NP = ________
- FL = ________
- A = ________
- H = ________
- IP = ________
- EP = ________

TURN TO PAGE 125
FRICITION LOSS + ELEVATION + INTAKE PRESSURE

2. ANSWER:

<table>
<thead>
<tr>
<th>Supply Pump</th>
<th>Fire Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP = 0 PSI</td>
<td>NP = 100 PSI</td>
</tr>
<tr>
<td>FL = 130 PSI</td>
<td>FL = 0 PSI</td>
</tr>
<tr>
<td>A = 0 PSI</td>
<td>A = 90 PSI</td>
</tr>
<tr>
<td>H = 0 PSI</td>
<td>H = 0 PSI</td>
</tr>
<tr>
<td>IP = 20 PSI</td>
<td>IP = 0 PSI</td>
</tr>
<tr>
<td>EP = 150 PSI</td>
<td>EP = 190 PSI</td>
</tr>
</tbody>
</table>

If you solved this problem correctly, OUTSTANDING! If you had some difficulties with this exercise, RETURN TO PAGE 121.

TURN TO PAGE 126
FRICTION LOSS + ELEVATION + INTAKE PRESSURE

3) Solve

Supply Pump 1 Supply Pump 2 Fire Pump

NP = ________ NP = ________ NP = ________

FL = ________ FL = ________ FL = ________

A = ________ A = ________ A = ________

H = ________ H = ________ H = ________

IP = ________ IP = ________ IP = ________

TURN TO PAGE 127
FRICTION LOSS + ELEVATION + INTAKE PRESSURE

3) **ANSWERS:**

<table>
<thead>
<tr>
<th>Supply Pump 1</th>
<th>Supply Pump 2</th>
<th>Fire Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP = 0 PSI</td>
<td>NP = 0 PSI</td>
<td>NP = 100 PSI</td>
</tr>
<tr>
<td>FL = 90 PSI</td>
<td>FL = 108 PSI</td>
<td>FL = 54 PSI</td>
</tr>
<tr>
<td>A = _______</td>
<td>A = _______</td>
<td>A = _______</td>
</tr>
<tr>
<td>H = + 43 PSI</td>
<td>H = + 43 PSI</td>
<td>H = _______</td>
</tr>
<tr>
<td>IP = 20 PSI</td>
<td>IP = 20 PSI</td>
<td>IP = _______</td>
</tr>
</tbody>
</table>

TURN TO PAGE 128
FRICTION LOSS + ELEVATION + INTAKE PRESSURE

4) Solve

Write in answers

<table>
<thead>
<tr>
<th>Supply Pump 1</th>
<th>Supply Pump 2</th>
<th>Fire Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP = ________</td>
<td>NP = ________</td>
<td>NP = ________</td>
</tr>
<tr>
<td>FL = ________</td>
<td>FL = ________</td>
<td>FL = ________</td>
</tr>
<tr>
<td>A = ________</td>
<td>A = ________</td>
<td>A = ________</td>
</tr>
<tr>
<td>H = ________</td>
<td>H = ________</td>
<td>H = ________</td>
</tr>
<tr>
<td>IP = ________</td>
<td>IP = ________</td>
<td>IP = ________</td>
</tr>
</tbody>
</table>

TURN TO PAGE 129
4) **ANSWER:**

<table>
<thead>
<tr>
<th></th>
<th>Supply Pump 1</th>
<th>Supply Pump 2</th>
<th>Fire Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP =</td>
<td>0 PSI</td>
<td>0 PSI</td>
<td>100 PSI</td>
</tr>
<tr>
<td>FL =</td>
<td>51 PSI</td>
<td>64 PSI</td>
<td>96 PSI</td>
</tr>
<tr>
<td>A =</td>
<td>0 PSI</td>
<td>0 PSI</td>
<td>15 PSI</td>
</tr>
<tr>
<td>H =</td>
<td>0 PSI</td>
<td>0 PSI</td>
<td>0 PSI</td>
</tr>
<tr>
<td>IP =</td>
<td>20 PSI</td>
<td>20 PSI</td>
<td>0 PSI</td>
</tr>
<tr>
<td>EP =</td>
<td>71 PSI</td>
<td>84 PSI</td>
<td>211 PSI</td>
</tr>
</tbody>
</table>

TURN TO PAGE 130
5) Solve

Write in answers

<table>
<thead>
<tr>
<th>Supply Pump 1</th>
<th>Fire Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP = _______</td>
<td>NP = _______</td>
</tr>
<tr>
<td>FL = _______</td>
<td>FL = _______</td>
</tr>
<tr>
<td>A = _______</td>
<td>A = _______</td>
</tr>
<tr>
<td>H = _______</td>
<td>H = _______</td>
</tr>
<tr>
<td>IP = _______</td>
<td>IP = _______</td>
</tr>
<tr>
<td>EP = _______</td>
<td>EP = _______</td>
</tr>
</tbody>
</table>

TURN TO PAGE 131
FRICTION LOSS + ELEVATION + INTAKE PRESSURE

5) **ANSWER:**

<table>
<thead>
<tr>
<th>Supply Pump 1</th>
<th>Fire Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP = 0 PSI</td>
<td>NP = 50 PSI</td>
</tr>
<tr>
<td>FL = 130 PSI</td>
<td>FL = 65 PSI</td>
</tr>
<tr>
<td>A = 0 PSI</td>
<td>A = 0 PSI</td>
</tr>
<tr>
<td>H = +43 PSI</td>
<td>H = 0 PSI</td>
</tr>
<tr>
<td>IP = 20 PSI</td>
<td>IP = 0 PSI</td>
</tr>
<tr>
<td>EP = 193 PSI</td>
<td>EP = 115 PSI</td>
</tr>
</tbody>
</table>

TURN TO PAGE 132
CHAPTER IV
SUMMARY

1) Relay Pumping is a pump operation performed to assure adequate flow and to assure that the safety pressure of hoselines is not exceeded. Pump Operators will be required to perform a relay operation when any of the following scenarios develop:

A. When the water supply is inadequate for the required flow needed to perform the operation.

B. When the pressure requirements to supply the required amount of water are too great for one pumper.

C. When the pressure requirements exceed the safe operating limits of the hose lines.

The inability to meet required flow usually occurs when the water source or supply and fire are separated by a long distance. It could be a few hundred feet or it could be over a mile in some rural locations. Additionally, due to water main breaks caused by natural disasters, a relay operation may have to be performed to move basic water supplies.

There are several methods used for performing Relay Pumping. In all methods used, the Pump Operators must know the following two factors:

A. The required flow to be maintained

B. The length and size of hose

Additionally, there are two main types of pressure losses that Relay Pumping must overcome. These are:

A. Elevation Pressure

B. Friction loss in the hose

TURN TO PAGE 133
FRICITION LOSS + ELEVATION + INTAKE PRESSURE

2) The relay pumping operation called the “Constant Pressure Method” is primarily used for long distances over flat ground and allows for all pumpers to relay pump the same discharge pressure at all times. This method is not applicable to our area because most of our rural areas are located in hilly and uneven terrain and water supply differs throughout the response.

In order to work in our geographic areas, the Relay Pumping method is a variation of the constant pressure method. This variation does not require the pumpers to be placed at equal lengths, nor does it require water to be wasted by an open discharge draining excessive flow. The variation of the constant pressure method also allows for a pumper to be inserted in any part of the hoselay to make the lay effective.

TURN TO PAGE 134
CHAPTER V

FOAM OPERATIONS

CALCULATING FOAM LAYS

FOAM APPLICATION RATE (FAR)
FOAM CONCENTRATION NEEDED (FCN)
FOAM SOLUTION AVAILABLE (FSA)
The purpose of this chapter is to explain the necessary steps that must be performed to provide for a successful foam operation. If foam operations are not performed correctly, foam can be wasted, will not be made correctly, or will not be made at all. The operations explained in this chapter are based on spilled flammable liquids, which are the type of incidents that Firefighters would most likely encounter. This chapter identifies the steps that must be taken and understood by the Incident Commander and the Engineer when working with foam.

The first step to know is the **Foam Application Rate (FAR)**. This tells you the GPM flow you will need to extinguish a certain size of flammable liquid spill. The *Foam Application Rate* for is calculated using the following formula:

\[0.10 \text{ GPM} \times \text{FSF} \]

0.10 GPM = Gallons per minute of foam solution needed per 1 square foot of fire.
FSF = fire per square foot

The second step to know is the **Foam Concentration Needed (FCN)**. This tells you how much foam concentration you will need to have available to operate over a set period of time. The foam concentration needed is calculated using the following formula:

\[\text{EGPM} \times \% F \times T \]

EGPM = Educator GPM and is found by calculating the (FAR)
% F = Percent of foam being used (In most cases this will be 3%.)
T = Time needed to operate (This will be a minimum of ten minutes, but could be longer.)

The third step is to understand the **Foam Solution Available (FSA)**. This tells you how much solution you will have available once you have determined the FCN. The formula for **Foam Solution Available** is:

\[\text{FCN} \times 33 \]

FCN = Foam Concentration Needed
33 = A constant (It represents the amount of water needed to mix with the FCN.)

TURN TO PAGE 136
Calculating Foam Application Rate

In order to further understand these formulas and how they relate to the proper application of foam, each one will be covered in detail. The first calculation we will work with is the **Foam Application Rate (FAR)**. The FAR is used to determine the amount of Foam Solution in GPM that would need to be provided to extinguish a flammable liquid spill. Unlike water, there is not a continuous availability of foam. If foam solution is applied prior to having enough available for complete extinguishment, the foam solution will be wasted and the fire will not be extinguished.

Consider the following example:

A flammable liquid spill has ignited and is covering a surface area of approximately 1200 square feet. By using the formula \(.10 \text{ GPM} \times \text{FSF} \) the GPM flow needed to extinguish this incident can be properly calculated. In this case the problem calculates as follows:

\[.10 \text{ GPM} \times 1200 \text{ SF} = 120 \text{ GPM} \]

120 GPM will be needed to extinguish this fire.

This figure must now be compared to the foam equipment available. Knowing that the fire can be extinguished with 120 GPM, one Angus IND 450 In-line eductor and one Angus FD450H nozzle (rated at 120 GPM) can extinguish this fire.
2) Solve

Determine the required GPM and the number of eductors/nozzles needed for a flammable liquid spill that is covering a surface area of 1700 square feet.

\[\text{.10 GPM x SF} \]

\[\text{.10 GPM x } ________\text{ SF.} \]

\[\text{.10 GPM x } ________\text{ SF} = _______\text{ GPM} \]

\[\text{____ GPM will be needed to extinguish this fire.} \]

\[\text{____ Eductors/nozzles needed to extinguish this fire.} \]

TURN TO PAGE 138
1) **ANSWER**

170 GPM will be needed to extinguish this fire.
Two eductor/ nozzles will be needed to extinguish this fire.

2) **Solve**

Determine the required GPM and the number of eductors/nozzles needed for a flammable liquid spill that is covering a surface area of 2700 square feet.

\[
.10 \text{ GPM} \times \text{FSF} \\
.10 \text{ GPM} \times _____ \text{ SF}. \\
.10 \text{ GPM} \times _____ \text{ SF} = _____ \text{ GPM}. \\
\]

_____ GPM will be needed to extinguish this fire.
_____ Eductors/nozzles needed to extinguish this fire.

TURN TO PAGE 139
2) ANSWER

270 GPM will be needed to extinguish this fire.
Three eductors/nozzles will be needed to extinguish this fire.

3) Solve

Determine the required GPM and the number of eductors/nozzles needed for a flammable liquid spill that is covering a surface area of 4500 square feet.

.10 GPM x FSF.
.10 GPM x _____ SF.
.10 GPM x _____ SF = _____ GPM.

_____ GPM needed to extinguish this fire.
_____ Eductors/nozzles needed to extinguish this fire.

TURN TO PAGE 140
3) **ANSWER**

450 GPM will be needed to extinguish this fire.
Four eductors/nozzles will be needed to extinguish this fire.

If you are having difficulty calculating **Foam Application Rate** please TURN TO PAGE 135 AND START OVER. If you understand how to calculate the **FAR**, TURN TO PAGE 141 AND CONTINUE.
CALCULATING THE AMOUNT OF FOAM CONCENTRATE NEEDED

In order to determine the amount of Foam Concentrate Needed (FCN) for a flammable liquid spill, prior to extinguishment activities, use the following formula:

\[\text{EGPM} \times \%F \times T \]

Where:

- \(\text{EGPM} \) = GPM flow needed to extinguish the fire
- \(\%F \) = The percent of the foam concentrate you are applying
- \(T \) = Time needed to operate (minimum 10 minutes)

Consider the following example:

A flammable liquid spill has ignited and is covering a surface area of approximately 1200 square feet. By using the formula \(\text{.10 GPM x FSF} \) the GPM flow needed to extinguish this incident is calculated to be 120 GPM. In order to determine the amount of concentrate needed to operate for a minimum of 10 minutes using a foam concentrate of 3%, use the formula \(\text{EGPM} \times \%F \times T \).

\[
\text{EGPM} \times \%F \times T
\]

120 GPM \times 3\% \times 10
3.6 \times 10
36 gallons of foam must be available to operate one 120 GPM eductor for 10 minutes.

TURN TO PAGE 142
3) Solve

Determine the amount of FCN for an incident that requires the use of 270 GPM, 3% foam, and an operation time of 10 minutes.

\[
\text{EGPM} \times \%F \times T
\]
\[
\underline{\text{_____ GPM x 3\% x 10}}
\]
\[
\underline{\underline{\text{_____}} \times \underline{\text{_____}}}
\]

_____ gallons of foam must be available to operate 270 GPM, 3% foam, for 10 minutes.

TURN TO PAGE 143
1) **ANSWER**

81 gallons of foam must be available to operate 270 GPM, 3% foam, for 10 minutes.

2) **Solve**

Determine the amount of FCN for an incident that requires the use of 360 GPM, 3% foam, and an operation time of 10 minutes.

\[\text{EGPM} \times \% F \times T \]

\[_____ \text{ GPM} \times 3\% \times 10 \]

\[_____ \times _____ \]

_____ gallons of foam must be available to operate 360 GPM, 3% foam, for 10 minutes.

TURN TO PAGE 144
2) **ANSWER**

108 gallons of foam must be available to operate 360 GPM, 3% foam, for 10 minutes.

3) **Solve**

Determine the amount of FCN for an incident that requires the use of 480 GPM, 3% foam, and an operation time of 10 minutes.

\[
\text{EGPM} \times \%F \times T = \quad \text{GPM} \times 3\% \times 10
\]

\[
\text{_____} \times \text{_____}
\]

______ gallons of foam must be available to operate 480 GPM, 3% foam, for 10 minutes.

TURN TO PAGE 145
\[
\text{.10 GPM x FSF \ \ EGPM x \% F x T \ \ FCN x 33}
\]

3) **ANSWER:**

144 gallons of foam must be available to operate 480 GPM, 3% foam, for 10 minutes.

If you are having difficulty calculating the amount of **Foam Concentration Needed** please **TURN TO PAGE 141 AND START OVER.** If you understand how to calculate the **FCN**, **TURN TO PAGE 146 AND CONTINUE.**
Calculating The Amount Of Foam Solution Available

In order to determine the total amount of Foam Solution Available (FSA), which is what will provide the GPM flow, take the amount of Foam Concentration Needed and multiply it by 33.

Consider the following example:

At a flammable liquid spill of approximately 1200 square feet, you have determined that before firefighting operations may start you must have 36 gallons of foam concentrate. By using the formula FCN x 33 the total amount of solution that you will have available to flow will be known.

FCN x 33
36 x 33
1188 gallons of Foam Solution Available

The Engineer can now make a determination on the type of water supply that should be obtained.

Note: No additional problems for calculating the Foam Solution Available are listed in this section due to the simplicity of this equation. Very simply, all you are doing is multiplying the amount of FCN times the ratio of water, to give you the total FSA.
Calculating Foam Lays

Once it is determined that there is enough foam available to operate at a fire scene, the calculation of a foam lay to an eductor is very simple. The Angus 450 eductor has a rated flow of 120 GPM at 100 PSI. This calculation comes from the outlet side. There is a 20% pressure loss through this type of eductor. For example, if you pump 100 PSI to the inlet side, you will actually get 80 PSI to the outlet side. In order to provide the correct flow out the nozzle, 150 PSI needs to be delivered to the inlet side of the eductor. The foam nozzle should be no more than 150 feet from the eductor. However, the eductor can be placed in line up to 450 feet from the pump when using 1 ¾ inch hose and a 120 GPM eductor. This allows for an operating length of 600 feet from the pump.

Consider the following example:

\[
\begin{align*}
\text{INLET PRESSURE} & = 150 \text{ PSI} \\
\text{FRICTION LOSS} & = 11 \text{ PSI} \\
\text{HEAD} & = 0 \text{ PSI} \\
\text{EP} & = 161 \text{ PSI}
\end{align*}
\]

Fire Department Foam Lay Standards:

Use 1 ¾ inch hose.
Place the eductor within the first 50 feet of hose whenever possible. This allows for the Engineer to keep track of the eductor, and help to provide constant foam. Nozzle flow and eductor flow are to be the same.
INLET PRESSURE + FRICTION LOSS + HEAD

1) Solve

\[\text{IP} = \quad \text{FL} = \quad \text{H} = \quad \text{EP} = \quad \]

TURN TO PAGE 149
INLET PRESSURE + FRICTION LOSS + HEAD

1) ANSWER

IP = 150 PSI
FL = 14 PSI
H = 0 PSI
EP = 164 PSI

2) Solve

INLET PRESSURE + FRICTION LOSS + HEAD

IP = ________
FL = ________
H = ________
EP = ________

TURN TO PAGE 150
INLET PRESSURE + FRICTION LOSS + HEAD

2) ANSWER

\[
\begin{align*}
\text{IP} &= 150 \text{ PSI} \\
\text{FL} &= 45 \text{ PSI} \\
\text{H} &= 0 \text{ PSI} \\
\text{EP} &= 195 \text{ PSI}
\end{align*}
\]

3) Solve

\[
\begin{align*}
\text{IP} &= \underline{} \text{ PSI} \\
\text{FL} &= \underline{} \text{ PSI} \\
\text{H} &= \underline{} \text{ PSI} \\
\text{EP} &= \underline{} \text{ PSI}
\end{align*}
\]

TURN TO PAGE 151
3) **Answer:**

\[
\begin{align*}
\text{IP} & = 150 \text{ PSI} \\
\text{FL} & = 11 \text{ PSI} \\
\text{H} & = 43 \text{ PSI} \\
\text{EP} & = 204 \text{ PSI}
\end{align*}
\]

Turn to page 152
CHAPTER V
SUMMARY

1) In order to determine the **Foam Application Rate (FAR)**, which tells you GPM flow needed to extinguish a certain size of flammable liquid spill, use the following formula:

\[0.10 \text{ GPM} \times \text{FSF} \]

\[0.10 \text{ GPM} = \text{Gallons per minute of foam solution needed per 1 square foot of fire.} \]
\[\text{FSF} = \text{fire per square foot.} \]

2) In order to determine the **Foam Concentration Needed (FCN)**, which tells you how much foam concentration you will need to have available to operate over a set period of time, use the following formula:

\[\text{EGPM} \times \%F \times T \]

\[\text{EGPM} = \text{Eductor GPM} \]
\[\%F = \text{Percent of foam being used (In most cases this will be 3%).} \]
\[T = \text{Time needed to operate (This will be a minimum of ten minutes, but could be longer.)} \]

3) In order to determine the **Foam Solution Available (FSA)**, which tells you how much solution you will have available once you have determined the amount of foam needed, use the following formula:

\[\text{FCN} \times 33 \]

\[\text{FCN} = \text{Foam Concentration Needed} \]
\[33 = \text{A constant (This represents the amount of water needed to mix with the FCN.)} \]

4) Once it is determined that there is enough foam available to operate at a fire scene, the calculation of a foam lay to an eductor is very simple. Use the following formula:

\[\text{IP} \times \text{FL} \times \text{H} \]

\[\text{IP} = \text{The Inlet Pressure of the eductor, normally 150 PSI} \]
\[\text{FL} = \text{Friction loss in the hose up to the eductor} \]
\[\text{H} = \text{Head pressure} \]
CHAPTER VI

DETERMINING ENGINE PRESSURE USING THE FIELD HYDRAULICS

REFERENCE SHEET (FHRS)
\[EP = NP + FL + A (\pm) H \]

INTRODUCTION

Although there are several ways to compute Engine Pressure (EP), this work book has adopted one method because of its simplicity for field use:

\[EP = NP + FL + A (\pm) H \]

To assist you, we have included as a quick reference, a “Field Hydraulics Reference Sheet” (FHRS) in the back of this manual. You might want to copy this sheet and shrink it to a size that you can keep with you while you’re on duty to help you with your calculations. The problems in this chapter are designed to familiarize you with the Field Hydraulics Reference Sheet's use.

TURN TO PAGE 155
EP = NP + FL + A (±) H

HOW TO USE THE FIELD HYDRAULICS REFERENCE SHEET (FHRS)

Using the GPM & FRICTION LOSS TABLES on the FHRS, determine how much water is flowing from a 1 1/8 inch, hand held tip on a 2 ½ inch hose.

What is the Friction Loss?

Let’s work this together:

Find 1 1/8 inch tip under the GPM table. Less than 1 1/8 inch tip you see that there are two figures (80, 210).

These figures are the gallons per minute (GPM). Now look to the left of these figures, at the Nozzle Pressure Column. You should find 50 PSI, and 80 PSI.

Remember from Chapter II that hand held tips are 50 PSI (NP). Locate 50 PSI in the first row. Follow that row towards the right to the 1 1/8 inch column. Here we find the number 265. This is your GPM.

Now that we know the GPM and the size of the hose, we need to find the Friction Loss (FL). To do this, we move down to the Friction Loss Table. The top row across is GPM in 50 GPM increments. The first column down is the size of the hose. To the right of the Hose Column under the GPM row is the friction loss (FL) for that particular size hose and its GPM.

Our original problem was to find the GPM and the Friction Loss for a 1 1/8 inch tip on a hand held 2 ½ inch line. We already know from the GPM Table that the GPM is 265.

Now, in the GPM row, in the Friction Loss Table, we look for the number 265. We see that the number is not there. However, the numbers 250 and 300 are there. Because 265 is closer to 250 than 300, use 250 GPM. (Remember, we are using quick field calculations only.) The formula for calculating exact figures is FL = CQ²L and was discussed in Chapter II.

CONTINUE ON PAGE 156
EP = NP + FL + A (±) H

We know from our example that the hose being used is a 2 ½ inch line. Find 2 ½ inch in the left hand column. Follow that row over to the 250 GPM columns, and you will find the number 13. That is your friction loss for 2 ½ inch hose at 250 GPM.

NOTE: The friction loss figures taken from the “**FRICTION LOSS TABLE**” are for **100 foot increments of hose.**

If you have 200 feet of hose, the FL would be: 2 x 13
With 300 feet of hose, the FL would be: 3 x 13, etc.

REMEMBER: To use these charts, you need to know:

1) The **use, size, and number of lines** of hose

 AND

2) Either the **tip size, nozzle type**, or the **GPM** flowing

 NOW WHY DON’T YOU TRY A COUPLE ON YOUR OWN?

 TURN TO PAGE 157
EP = NP + FL + A (±) H

1) What is the Friction Loss on a 1 inch tip on a 2 ½ inch handline? What is the flow?

Write in the answer:

1” Tip

_____ Friction Loss

_____ GPM’s

1) What is the Friction Loss on a 1 ½ inch combination nozzle on 1 ¾ inch hose? What is the flow?

Write in the answer:

1 ½” Combination

_____ Friction Loss

_____ GPM’s

TURN TO PAGE 158 FOR ANSWERS
EP = NP + FL + A (±) H

1) ANSWER

1” Tip

8 PSI Friction Loss

210 GPM’s

2) ANSWER

1 ½” Combination

35 PSI Friction Loss

150 GPM’s

If you understand how to use the Friction Loss and GPM Tables, TURN TO PAGE 159. If not, RETURN TO PAGE 154 AND BEGIN AGAIN.
EP = NP + FL + A (±) H

1) Solve

Let’s solve this one together. It is easiest to begin at the end of the hoselay and work your way from the nozzle back to the engine.

The nozzle pressure is 100 PSI because they are combination nozzles. Look at the Field Hydraulic Reference Sheet and in the GPM row find 150 GPM. Now look down the Hose Size Column and find 1 ¾ inch hose. Next, look from the left to right and find the number 35. That is the friction loss for 1 ¾ inch hose only. You add only 35 PSI for both 1¾ inch hoses (bundles) because it would be the same as running each hose off two separate discharges on the engine.

The appliance, a gated wye, has 10 PSI FL. To figure the friction loss on the 2 ½ inch supply hose we must know the amount of GPM flow from the two nozzles. We know that one bundle flows 150 GPM, so two bundles would be twice that amount, 300 GPM. Look at the Field Hydraulics Reference Sheet, and in the GPM Row find 300 GPM. Now look down the Size Hose Column and find 2 ½ inch hose. Next, look from left to right to where the GPM Row and the Hose Size Column meet. This number is 18. This number is the FL for 100 feet of 2 ½ inch hose. Since we have 300 feet of 2 ½ inch hose, the FL would be 3 x 18 PSI = 54 PSI FL.

Therefore, the total Engine Pressure is:

<table>
<thead>
<tr>
<th>Combination Nozzle</th>
<th>NP</th>
<th>FL</th>
<th>±H</th>
<th>EP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ¾” bundles</td>
<td>100</td>
<td>35</td>
<td>0</td>
<td>199</td>
</tr>
<tr>
<td>2 ½” supply</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wye</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head</td>
<td></td>
<td></td>
<td>+0</td>
<td></td>
</tr>
<tr>
<td>ENGINE PRESSURE</td>
<td></td>
<td></td>
<td></td>
<td>199</td>
</tr>
</tbody>
</table>

Therefore, the total Engine Pressure is:

EP = 199 PSI
EP = NP + FL + A (±) H

Solve

Write in answers

NP = __________
FL = __________
A = __________
±H = __________
EP = __________

TURN TO PAGE 161
EP = NP + FL + A (±) H

ANSWER:

NP = 100 PSI
FL = 50 PSI (1 ¾ inch hose 35 PSI FL)
 (2 ½ inch hose 15 PSI FL)
A = 10 PSI
±H = 0 PSI
EP = 160 PSI

If you solved this problem correctly, OUTSTANDING!

If, however, you had some difficulties with this exercise, please follow along:

This problem is similar to the one on the preceding pages. However, instead of pumping both bundles (two 1 ¾ inch lines at 300 GPM), we are now pumping one bundle, or one 1 ¾ inch line at 150 GPM.

Nozzle Pressure is still 100 PSI NP

FL for the 1 ¾ inch hose is 35 PSI. Remember whether we are pumping one bundle or two off the same supply line, we figure the FL for 150 GPM only.

The friction loss for the 2 ½ inch supply line is figured at 150 GPM. This calculates to 5 PSI per 100 feet. Since we have 300 feet of 2 ½ inch hose, the FL would be 3 x 5 = 15 PSI. We need to add the FL for both hoses, bundles, and supply lines, therefore, Total FL = (35 PSI + 15 PSI = 50 PSI FL).

The Appliance Friction Loss for a wye is 10 PSI.

Although elevation (±H) is not a factor in this problem, you should develop the habit of considering ALL FACTORS of the Engine Pressure formula.

TURN TO PAGE 162
EP = NP + FL + A (±) H

Get some scratch paper and have your Field Hydraulics Reference Sheet in front of you. Now you can begin solving some hydraulics problems.

Solve

Write in answers

NP = __________
FL = __________
A = __________
±H = __________
EP = __________

TURN TO PAGE 163
\[EP = NP + FL + A (\pm) H \]

ANSWERS

- \(NP = 50 \)
- \(FL = 63 \)
- \(A = 0 \)
- \(\pm H = 0 \)
- \(EP = 113 \)

Because it is a hand held tip, the Nozzle Pressure is **50 PSI NP**. Looking at the GPM Chart of the Reference Sheet, you see that a 1 ¼ inch tip discharges 325 GPM at 50 PSI.

In the Friction Loss Table we find GPM columns for 300 and 350 GPM, but nothing for 325 GPM. We also see that the FL for 300 GPM is 18 PSI and 25 PSI for 350 GPM. For field calculations we could interpolate and round off to 21 PSI FL, which would be close for 325 GPM.

Since 300 feet of 2 ½ inch hose is three 100 foot sections, \(3 \times 21 \text{ PSI} = 63 \text{ PSI FL} \). There are no Appliances or Head.

So the **Engine Pressure (EP)** is **113 PSI**.

TURN TO PAGE 164
EP = NP + FL + A (±) H

At the back of this book, along with the Field Hydraulics Reference Sheet, you will find a Wildland Hydraulics and Foam Reference Sheet. This chart is used in the same manner as the Field Hydraulics Reference Sheet. It also has the tip sizes along the top row, Nozzle Pressure down the left hand column, and GPM running left to right.

To figure GPM using this chart, you need to know the Tip Size and Nozzle Pressure.

Example:

A 1 inch wildland combination nozzle at 100 PSI Nozzle Pressure flows between 5 and 40 GPM, depending on the nozzle setting. Use the established standard setting of 20 GPM.

Now that you know the GPM, you could use the Friction Loss formula CQ²L to find the Friction Loss, as long as you also know your hose size and length of lay.

TURN TO PAGE 165
\[EP = NP + FL + A (\pm) H \]

Solve

Write in answers

\begin{align*}
NP &= ______ \\
FL &= ______ \\
A &= ______ \\
\pm H &= ______ \\
EP &= ______ \\
\end{align*}

TURN TO PAGE 166
\[
\text{EP} = \text{NP} + \text{FL} + A (\pm) H
\]

If you calculated 179 PSI, CONGRATULATIONS!

TURN TO PAGE 168 AND PROCEED.

If you did not get 179 PSI for your answer, **TURN TO PAGE 167** for the correct answer and explanation.
\[\text{EP} = \text{NP} + \text{FL} + A (\pm) H \]

ANSWERS

- \(\text{NP} = 100 \text{ PSI} \)
- \(\text{FL} = 36 \text{ PSI} \)
- \(A = 0 \text{ PSI} \)
- \(\pm H = +43 \text{ PSI} \)
- \(\text{EP} = 179 \text{ PSI} \)

Nozzle Pressure (NP) is 100 PSI because it is a combination nozzle.

To figure the Friction loss, we need to refer to the Wildland Hydraulics Reference Sheet. We find that a 1 inch combination nozzle at 100 PSI NP flows between 5 and 40 GPM with a standard of 20 GPM. Using the formula and coefficients learned in Chapter II, we are now able to figure the Friction Loss (FL) in the hoselay.

\[\text{FL} = C Q^2 L \]

\[\text{FL} = 24 \times (20/100)^2 \times (600/100) \]

\[\text{FL} = 24 \times (.2)^2 \times 6 \]

\[\text{FL} = 24 \times 0.04 \times 6 \]

\[\text{FL} = 6 \text{ PSI} \]

There are no Appliances, so \(A = 0 \). Because the nozzle is above the pump, you must add Head. We also learned in Chapter II that 100 feet of elevation \(H \) equals 43 PSI; therefore Engine Pressure equals 179 PSI.

TURN TO PAGE 168
EP = NP + FL + A (±) H

Solve

Write in answers

NP = __________
FL = __________
A = __________
±H = __________
EP = __________

TURN TO PAGE 169
EP = NP + FL + A (±) H

ANSWERS

NP = 100 PSI
FL = 114 PSI
A = 0 PSI
±H = 0 PSI
EP = 214 PSI

Nozzle Pressure (NP) is 100 PSI because it is a combination nozzle. A 1 ½ inch combination nozzle on a 1 ½ inch hose has 38 PSI FL per 100 feet of hose. Three 100 foot sections at 38 PSI per hundred is 114 PSI total FL. There are no appliance and no head so the EP is 214 PSI.

QUESTION: Why don’t you add FL in for both hose lines?

ANSWER: You would agree that the EP is 214 for one line.

FOLLOW ALONG ON PAGE 170
EP = NP + FL + A (±) H

Per the Chart, you are flowing 125 GPMs with one line.

Let’s add the other line and see what is happening.

When you add the second line, which is identical to the first line, the EP remains the same. What is happening is that the pump is working harder because you are flowing more water. **All you are doing is increasing the engine speed of the pump to deliver this greater quantity of water, so you only figure EP for the one line.**

TURN TO PAGE 171
\[EP = NP + FL + A \pm H \]

Solve

Write in answers

NP = __________
FL = __________
A = __________
\(\pm H \) = __________
EP = __________

TURN TO PAGE 172
EP = NP + FL + A (±) H

ANSWERS

NP = 100 PSI
FL = 70 PSI
A = 0 PSI
H = 0 PSI
EP = 170 PSI

In figuring two separate lines that are not identical, for the correct EP, figure the line that requires the most Engine Pressure. On the line, which requires less EP, the only thing you can do to prevent excessive Nozzle Pressure is to gate down the discharge while the nozzle is flowing.

TURN TO PAGE 173
\[EP = NP + FL + A (\pm) H \]

If you are still with us, CONGRATULATE YOURSELF!

If, however, you feel unsure about anything we have covered up to this point, go back to that particular section and review the material. You may want to try working a few problems again.

After a break, sit down with your Field Hydraulics Reference Sheet and writing materials. Now you can begin the final chapter.

TURN TO PAGE 174
Chapter VII

SOLVING HYDRAULICS PROBLEMS
EP = NP + FL + A (±) H

SOLVING HYDRAULICS PROBLEMS

Your job as an Engineer is an important one. You must be prepared to solve hydraulics problems on the fireground quickly. The fireground does not give you the luxury of time when solving hydraulics problems. To stay proficient, you must drill yourself on a routine basis and have your FL card with you at all times.

On the following pages there are 20 problems to solve. Your goal is to be able to solve these problems in 30 minutes and be within 10 PSI of the required Engine Pressure on all 20 problems. The answers for the problems show the actual calculations. If you do not meet this goal, you should continue to drill with hydraulics until you can. It is important to maintain this proficiency in order to be able to provide safe and effective fire streams.

GOOD LUCK!

TURN TO PAGE 176
EP = NP + FL + A (±) H

1) Solve

Write in answers

NP = __________
FL = __________
A = __________
±H = __________
EP = __________

TURN TO PAGE 177
\[EP = NP + FL + A (\pm) H \]

1) **ANSWERS**

NP = 100 PSI
FL = 52.5 PSI
A = 0 PSI
H = 0 PSI
EP = 152.5 PSI

TURN TO PAGE 178
\[EP = NP + FL + A (\pm) H \]

2) Solve

Write in answers

NP = __________
FL = __________
A = __________
\(\pm H = \) __________
EP = __________

TURN TO PAGE 179
\[EP = NP + FL + A (\pm) H \]

2) **ANSWERS**

NP = 50 PSI
FL = 44 PSI
A = 0 PSI
H = +10 PSI
EP = **104 PSI**

TURN TO PAGE 180
\[EP = NP + FL + A (\pm) H \]

3) Solve

Write in answers

NP =
FL =
A =
\(\pm H = \)
EP =

TURN TO PAGE 181
EP = NP + FL + A (±) H

3) ANSWERS

NP = 80 PSI
FL = 90 PSI
A = 15 PSI
H = 0 PSI
EP = 185 PSI

TURN TO PAGE 182
\[EP = NP + FL + A (\pm) H \]

4) Solve

Write in answers

\[
\begin{align*}
NP &= ________ \\
FL &= ________ \\
A &= ________ \\
\pm H &= ________ \\
EP &= ________ \\
\end{align*}
\]

TURN TO PAGE 183
EP = NP + FL + A (±) H

4) ANSWERS

NP = 50 PSI
FL = 13 PSI (One 2 ½ inch hose 9 PSI FL)
 (Two 2 ½ inch hose 4 PSI FL)
A = 25 PSI
H = +15 PSI
EP = 103 PSI

TURN TO PAGE 184
5) **Solve**

\[\text{EP} = \text{NP} + \text{FL} + A (\pm) H \]

Write in answers

\[
\begin{align*}
\text{NP} &= \underline{\quad} \\
\text{FL} &= \underline{\quad} \\
A &= \underline{\quad} \\
\pm H &= \underline{\quad} \\
\text{EP} &= \underline{\quad}
\end{align*}
\]

TURN TO PAGE 185
\[\text{EP} = \text{NP} + \text{FL} + A \ (\pm) \ H \]

5) **ANSWERS**

\begin{align*}
\text{NP} &= 80 \text{ PSI} \\
\text{FL} &= 28 \text{ PSI} \\
A &= 90 \text{ PSI} \\
H &= 0 \text{ PSI} \\
\text{EP} &= 198 \text{ PSI}
\end{align*}

Note: When using two 4 inch lines, divide GPM in half and figure single line Friction Loss.

TURN TO PAGE 186
6) Solve

\[EP = NP + FL + A (\pm) H \]

Write in answers

NP = __________
FL = __________
A = __________
\(\pm H = \) __________
EP = __________

TURN TO PAGE 187
\[EP = NP + FL + A (\pm) H \]

6) **ANSWERS**

\begin{align*}
NP &= 100 \text{ PSI} \\
FL &= 30 \text{ PSI} \\
A &= 0 \text{ PSI} \\
\text{SUBTOTAL:} &= 130 \text{ PSI} \\
H &= -22 \text{ PSI} \\
EP &= 108 \text{ PSI}
\end{align*}

TURN TO PAGE 188
\[EP = NP + FL + A (\pm) H \]

7) Solve

Write in answers

\[NP = \underline{\hspace{2cm}} \]
\[FL = \underline{\hspace{2cm}} \]
\[A = \underline{\hspace{2cm}} \]
\[\pm H = \underline{\hspace{2cm}} \]
\[EP = \underline{\hspace{2cm}} \]

TURN TO PAGE 189
\[\text{EP} = \text{NP} + \text{FL} + \text{A} (\pm) \text{H} \]

7) **ANSWERS**

NP = 50 PSI
FL = 19 PSI
(1 ½ inch hose 15 PSI)
(2 ½ inch hose 4 PSI)
A = 25 PSI
H = +20 PSI
EP = 114 PSI

TURN TO PAGE 190
INLET PRESSURE + FRICTION LOSS + HEAD

8) Solve

Write in answers

\[\text{IP} = \quad \]
\[\text{FL} = \quad \]
\[\pm H = \quad \]
\[\text{EP} = \quad \]

TURN TO PAGE 191
8) ANSWERS

\[IP = 150 \text{ PSI} \]
\[FL = 11 \text{ PSI} \]
\[H = 0 \text{ PSI} \]
\[EP = 161 \text{ PSI} \]

TURN TO PAGE 192
EP = NP + FL + A (±) H

9) Solve

Write in answers

NP = __________
FL = __________
A = __________
±H = __________
EP = __________

TURN TO PAGE 193
\[EP = NP + FL + A (\pm) H \]

9) **ANSWERS**

NP = 100 PSI
FL = 52 PSI
A = 0 PSI
H = 0 PSI
EP = 152 PSI

TURN TO PAGE 194
EP = NP + FL + A (±) H

10) Solve

Write in answers

NP = __________
FL = __________
A = __________
±H = __________
EP = __________

TURN TO PAGE 195
\[EP = NP + FL + A (\pm) H \]

10) ANSWERS

\begin{align*}
NP &= 80 \text{ PSI} \\
FL &= 32 \text{ PSI} \\
A &= 90 \text{ PSI} \\
H &= 0 \text{ PSI} \\
EP &= 202 \text{ PSI (pump 200 PSI due to hose safety pressure)}
\end{align*}

TURN TO PAGE 196
11) Solve

Write in answers

NP = __________

FL = __________

A = __________

±H = __________

EP = __________

TURN TO PAGE 197
\[EP = NP + FL + A (\pm) H \]

11) ANSWERS:

- NP = 100 PSI
- FL = 58 PSI (1 ¾ inch hose 35 PSI FL) (2 ½ inch hose 23 PSI FL)
- A = 25 PSI
- H = 10 PSI
- EP = 193 PSI

TURN TO PAGE 198
\[EP = NP + FL + A \ (\pm \ H) \]

12) Solve

Write in answers

- \(NP = \) ________
- \(FL = \) ________
- \(A = \) ________
- \(\pm H = \) ________
- \(EP = \) ________

TURN TO PAGE 199
\[EP = NP + FL + A (\pm) H \]

12) ANSWERS

NP = 50 PSI
FL = 18 PSI
A = 0 PSI
H = 0 PSI
EP = 68 PSI

TURN TO PAGE 200
\[EP = NP + FL + A (\pm) H \]

13) Solve

Write in answers

NP =
FL =
A =
\(\pm H = \)
EP =

TURN TO PAGE 201
\[EP = NP + FL + A \ (\pm) \ H \]

13) **ANSWERS**

- NP = 100 PSI
- FL = 45 PSI
- A = 15 PSI
- H = 0 PSI
- EP = 160 PSI

TURN TO PAGE 202
\[EP = NP + FL + A \pm H \]

14) Solve

Write in answers

\[
\begin{align*}
NP &= \underline{} \\
FL &= \underline{} \\
A &= \underline{} \\
\pm H &= \underline{} \\
EP &= \underline{}
\end{align*}
\]

TURN TO PAGE 203
\[EP = NP + FL + A (\pm) H \]

14) ANSWERS

NP = 100 PSI
FL = 42 PSI (1 \(\frac{3}{4}\) inch hose 35 PSI FL)
(2 \(\frac{1}{2}\) inch hose 7 PSI FL)
A = 10 PSI
H = 0 PSI
EP = 152 PSI

TURN TO PAGE 204
15) Solve

\[\text{EP} = \text{NP} + \text{FL} + A (\pm) H \]

Write in answers

NP = __________

FL = __________

A = __________

±H = __________

EP = __________

TURN TO PAGE 205
\[EP = NP + FL + A (\pm) H \]

15) **ANSWERS**

NP = 50 PSI
FL = 44 PSI
A = 0 PSI

SUBTOTAL: 90 PSI
H = -15 PSI

EP = 79 PSI

TURN TO PAGE 206
EP = NP + FL + A (±) H

16) Solve

Write in answers

<table>
<thead>
<tr>
<th>Portable Monitor</th>
<th>Handline</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP = ____________</td>
<td>NP = ____________</td>
</tr>
<tr>
<td>FL = ____________</td>
<td>FL = ____________</td>
</tr>
<tr>
<td>A = ____________</td>
<td>A = ____________</td>
</tr>
<tr>
<td>±H = ____________</td>
<td>±H = ____________</td>
</tr>
<tr>
<td>EP = ____________</td>
<td>EP = ____________</td>
</tr>
</tbody>
</table>

How would you obtain the correct pressure for the Handline?

TURN TO PAGE 207
EP = NP + FL + A (±) H

16) ANSWERS

<table>
<thead>
<tr>
<th>Portable Monitor</th>
<th>Handline</th>
<th>Handline Answer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP = 80 PSI</td>
<td>NP = 100 PSI</td>
<td>By gating down.</td>
</tr>
<tr>
<td>FL = 108 PSI</td>
<td>FL = 70 PSI</td>
<td></td>
</tr>
<tr>
<td>A = 15 PSI</td>
<td>A = 0 PSI</td>
<td></td>
</tr>
<tr>
<td>H = 0 PSI</td>
<td>±H = 0 PSI</td>
<td></td>
</tr>
<tr>
<td>EP = 203 PSI</td>
<td>EP = 170 PSI</td>
<td></td>
</tr>
</tbody>
</table>

TURN TO PAGE 208
EP = NP + FL + A (±) H

17) Solve

Write in answers

NP = __________
FL = __________
A = __________
±H = __________
EP = __________

TURN TO PAGE 209
\[\text{EP} = \text{NP} + \text{FL} + A \pm H \]

17) ANSWERS

NP = 100 PSI
FL = 39.5 PSI (ONE 1 ¾ inch hose 35 PSI FL)
 (TWO 2 ½ inch hose 4.5 PSI FL)
A = 25 PSI
H = +10 PSI
EP = 174.5 PSI

TURN TO PAGE 210
EP = NP + FL + A (±) H

18) Solve

Write in answers

NP = __________
FL = __________
A = __________
±H = __________
EP = __________

TURN TO PAGE 211
\[EP = NP + FL + A \ (\pm) \ H \]

18) ANSWERS

\begin{align*}
NP &= 100 \text{ PSI} \\
FL &= 89 \text{ PSI} \\
A &= 10 \text{ PSI} \\
H &= 0 \text{ PSI} \\
EP &= 199 \text{ PSI}
\end{align*}

TURN TO PAGE 212
EP = NP + FL + A (±) H

19) Solve

Write in answers

NP = __________
FL = __________
A = __________
±H = __________
EP = __________

TURN TO PAGE 213
\[EP = NP + FL + A \pm H \]

19) ANSWERS

NP = 100 PSI
FL = 50 PSI
A = 10 PSI
H = 0 PSI
EP = 160 PSI

(ONE 1 \(\frac{3}{4}\) inch hose 35 PSI FL)
(ONE 2-\(\frac{1}{2}\) inch hose 15 PSI FL)

TURN TO PAGE 214
EP = NP + FL + A (±) H

20) Solve

Write in answers

NP = __________
FL = __________
A = __________
±H = __________
EP = __________

TURN TO PAGE 215
\[\textbf{EP} = \text{NP} + \text{FL} + A \ (\pm) \ H \]

20) ANSWERS

- \(\text{NP} = 100 \text{ PSI} \)
- \(\text{FL} = 36 \text{ PSI} \)
- \(A = 0 \text{ PSI} \)
- \(H = +43 \text{ PSI} \)
- \(\text{EP} = 179 \text{ PSI} \)

THE END
CONGRATULATIONS!

You have completed the Hydraulics Workbook. It is now up to you to take the information you have learned and start applying it to problems in the field. To become proficient, you must practice and continue to stay abreast with the information in this book.
Engine Pressure equals **Nozzle Pressure** plus Friction Loss from hose and **Appliances** plus **Head Pressure** (+ or -)

NP
NOZZLE PRESSURE
- Hand Line Straight Tip: 50 lbs
- Master Stream/Straight Tip: 80 lbs
- Fog Combination Nozzles: 100 lbs

FL
FRICTION LOSS = CQ^2L
- C = Coefficient for Hose Diameter
- Q^2 = (GPM/100)^2
- L = Length of Line/100

A
APPLIANCE
- Forestry Tee: 5 PSI
- Wye, Siamese: 10 PSI
- Manifolds: 10 PSI
- Portable Monitors: 15 PSI
- Engine (Relay Pumping): 20 PSI
- Standpipe (Head not incl.): 25 PSI
- Ladder Pipe 100’: 90 PSI

H
HEAD PRESSURE
- ADD 5 PSI for each floor and/or 10 feet above pump level.
- SUBTRACT 5 PSI for each floor and/or 10 feet below pump level.
- WILDLAND 100’ ELEV.: + OR – 43 PSI
- WILDLAND 50’ ELEV.: + OR – 22 PSI
- WILDLAND 25’ ELEV.: + OR – 11 PSI

FRICTION LOSS COEFFICIENTS

<table>
<thead>
<tr>
<th>SINGLE LINES</th>
<th>MULTIPLE LINES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1” = 150.0</td>
<td>TWO 2 ½” = .5</td>
</tr>
<tr>
<td>1 ½” = 24.0</td>
<td>THREE 2 ½” = .22</td>
</tr>
<tr>
<td>1 ¾” = 15.5</td>
<td>ONE 4” & ONE 2 ½” = .12</td>
</tr>
<tr>
<td>2 ½” = 2.0</td>
<td></td>
</tr>
<tr>
<td>4” = 0.2</td>
<td></td>
</tr>
</tbody>
</table>
FRICTION LOSS/GPM REFERENCE SHEET

GPM STRAIGHT BORE TIPS & NOZZLES

<table>
<thead>
<tr>
<th>TIP</th>
<th>5/8”</th>
<th>1”</th>
<th>1 1/8”</th>
<th>1 1/4”</th>
<th>13/8”</th>
<th>1 1/2”</th>
<th>1 3/4”</th>
<th>2”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight Tip H.L. @ 50 PSI (Q/100)^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80 (0.64)</td>
<td>210 (4)</td>
<td>265 (7)</td>
<td>325 (10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straight Tip Master Stream @ 80 PSI (Q/100)^2</td>
<td>105 (1)</td>
<td>265 (7)</td>
<td>340 (12)</td>
<td>415 (17)</td>
<td>505 (26)</td>
<td>600 (36)</td>
<td>820 (67)</td>
<td>1070 (115)</td>
</tr>
</tbody>
</table>

GPM FOG/COMBINATION NOZZLES

(GPM will vary with nozzle setting)

<table>
<thead>
<tr>
<th>Nozzle Size</th>
<th>1 1/2” on 1 1/2” hose</th>
<th>1 1/2” on 1 3/4” hose</th>
<th>2 1/2”</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 PSI</td>
<td>30-200</td>
<td>30-200</td>
<td>95-300</td>
</tr>
<tr>
<td>Standard Setting</td>
<td>125 (2)</td>
<td>150 (2)</td>
<td>250 (6)</td>
</tr>
</tbody>
</table>

FRICTION LOSS PER 100 FEET OF HOSE

<table>
<thead>
<tr>
<th>GPM HOSE</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
<th>750</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
<th>1050</th>
<th>1100</th>
<th>1150</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/2”</td>
<td>24</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>1 3/4”</td>
<td>15</td>
<td>35</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>2 1/2”</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>18</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>4”</td>
<td></td>
</tr>
<tr>
<td>Figures are Rounded to Assist with field hydraulics</td>
<td></td>
</tr>
</tbody>
</table>

Friction Loss Reference Sheet
Wildland and Foam Reference Sheet

Friction Loss Per 100 Feet of Hose

| GPM | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1" | 6 | 9 | 13 | 18 | 24 | 30 | 37 | 45 | 54 | 62 | 70 | 78 | 86 | 94 | 102 | 110 |
| 1 ½"| 1 | 1.5 | 2 | 3 | 4 | 5 | 6 | 7 | 9 | 10 | 12 | 13 | 15 | 17 | 19 | 21 | 24 |

Foam Application

<table>
<thead>
<tr>
<th>Foam Application Rate (GPM flow needed)</th>
<th>.10 GPM x FSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foam Concentration Needed, FCN</td>
<td>FAR x %F x T</td>
</tr>
<tr>
<td>(Concentrate needed over a period of time)</td>
<td></td>
</tr>
<tr>
<td>Foam Solution Available</td>
<td>FCN x 33</td>
</tr>
<tr>
<td>Foam Lay</td>
<td>IP + FL + H</td>
</tr>
</tbody>
</table>

GPM Straight Bore Tips

<table>
<thead>
<tr>
<th>Tip Size</th>
<th>¼"</th>
<th>3/8"</th>
<th>½"</th>
<th>5/8"</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPM @ 50 PSI</td>
<td>13</td>
<td>30</td>
<td>52</td>
<td>80</td>
</tr>
<tr>
<td>GPM @ 80 PSI</td>
<td>67</td>
<td>104</td>
<td>67</td>
<td>104</td>
</tr>
</tbody>
</table>

GPM Wildland Nozzles

<table>
<thead>
<tr>
<th>Tip Size</th>
<th>GPM W</th>
<th>1"</th>
<th>1 ½"</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 PSI</td>
<td>5-40</td>
<td>20</td>
<td>None</td>
</tr>
</tbody>
</table>

Fire Size

<table>
<thead>
<tr>
<th>Fire Size</th>
<th>1000</th>
<th>1500</th>
<th>2000</th>
<th>2500</th>
<th>3000</th>
<th>3500</th>
<th>4000</th>
<th>4500</th>
<th>5000</th>
<th>5500</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPM Flow Needed</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
<td>350</td>
<td>400</td>
<td>450</td>
<td>500</td>
<td>550</td>
</tr>
<tr>
<td>Foam Con. Needed</td>
<td>36 G</td>
<td>72 G</td>
<td>72 G</td>
<td>108 G</td>
<td>108 G</td>
<td>144 G</td>
<td>144 G</td>
<td>180 G</td>
<td>180 G</td>
<td></td>
</tr>
<tr>
<td>Foam Sol.</td>
<td>1188</td>
<td>2376</td>
<td>2376</td>
<td>3564</td>
<td>3564</td>
<td>4752</td>
<td>4752</td>
<td>5940</td>
<td>5940</td>
<td></td>
</tr>
</tbody>
</table>

Foam Reference

FCN Based on 120 GPM Eductors, 3% Foam and 10 Minute Application Time